Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 40(18): 3517-3532, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32245829

RESUMEN

One of the first signs of viral infection is body-wide aches and pain. Although this type of pain usually subsides, at the extreme, viral infections can induce painful neuropathies that can last for decades. Neither of these types of pain sensitization is well understood. A key part of the response to viral infection is production of interferons (IFNs), which then activate their specific receptors (IFNRs) resulting in downstream activation of cellular signaling and a variety of physiological responses. We sought to understand how type I IFNs (IFN-α and IFN-ß) might act directly on nociceptors in the dorsal root ganglion (DRG) to cause pain sensitization. We demonstrate that type I IFNRs are expressed in small/medium DRG neurons and that their activation produces neuronal hyper-excitability and mechanical pain in mice. Type I IFNs stimulate JAK/STAT signaling in DRG neurons but this does not apparently result in PKR-eIF2α activation that normally induces an anti-viral response by limiting mRNA translation. Rather, type I IFNs stimulate MNK-mediated eIF4E phosphorylation in DRG neurons to promote pain hypersensitivity. Endogenous release of type I IFNs with the double-stranded RNA mimetic poly(I:C) likewise produces pain hypersensitivity that is blunted in mice lacking MNK-eIF4E signaling. Our findings reveal mechanisms through which type I IFNs cause nociceptor sensitization with implications for understanding how viral infections promote pain and can lead to neuropathies.SIGNIFICANCE STATEMENT It is increasingly understood that pathogens interact with nociceptors to alert organisms to infection as well as to mount early host defenses. Although specific mechanisms have been discovered for diverse bacterial and fungal pathogens, mechanisms engaged by viruses have remained elusive. Here we show that type I interferons, one of the first mediators produced by viral infection, act directly on nociceptors to produce pain sensitization. Type I interferons act via a specific signaling pathway (MNK-eIF4E signaling), which is known to produce nociceptor sensitization in inflammatory and neuropathic pain conditions. Our work reveals a mechanism through which viral infections cause heightened pain sensitivity.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/metabolismo , Interferón Tipo I/toxicidad , Nociceptores/metabolismo , Umbral del Dolor/fisiología , Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Células Cultivadas , Enfermedades Virales del Sistema Nervioso Central/inducido químicamente , Enfermedades Virales del Sistema Nervioso Central/patología , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nociceptores/efectos de los fármacos , Nociceptores/patología , Dolor/inducido químicamente , Dolor/patología , Umbral del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología
2.
J Neurosci ; 40(2): 283-296, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31744861

RESUMEN

Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Potenciales de Acción/fisiología , Animales , Células HEK293 , Humanos , Ligadura , Masculino , Traumatismos de los Nervios Periféricos/metabolismo , Fosforilación , Ratas , Ratas Wistar , Nervios Espinales/lesiones , Nervios Espinales/cirugía
3.
J Neurochem ; 156(6): 897-916, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750173

RESUMEN

Extrasynaptic α5 -subunit containing GABAA (α5 -GABAA ) receptors participate in chronic pain. Previously, we reported a sex difference in the action of α5 -GABAA receptors in dysfunctional pain. However, the underlying mechanisms remain unknown. The aim of this study was to examine this sexual dimorphism in neuropathic rodents and the mechanisms involved. Female and male Wistar rats or ICR mice were subjected to nerve injury followed by α5 -GABAA receptor inverse agonist intrathecal administration, L-655,708. The drug produced an antiallodynic effect in nerve-injured female rats and mice, and a lower effect in males. We hypothesized that changes in α5 -GABAA receptor, probably influenced by hormonal and epigenetic status, might underlie this sex difference. Thus, we performed qPCR and western blot. Nerve injury increased α5 -GABAA mRNA and protein in female dorsal root ganglia (DRG) and decreased them in DRG and spinal cord of males. To investigate the hormonal influence over α5 -GABAA receptor actions, we performed nerve injury to ovariectomized rats and reconstituted them with 17ß-estradiol (E2). Ovariectomy abrogated L-655,708 antiallodynic effect and E2 restored it. Ovariectomy decreased α5 -GABAA receptor and estrogen receptor α protein in DRG of neuropathic female rats, while E2 enhanced them. Since DNA methylation might contribute to α5 -GABAA receptor down-regulation in males, we examined CpG island DNA methylation of α5 -GABAA receptor coding gene through pyrosequencing. Nerve injury increased methylation in male, but not female rats. Pharmacological inhibition of DNA methyltransferases increased α5 -GABAA receptor and enabled L-655,708 antinociceptive effect in male rats. These results suggest that α5 -GABAA receptor is a suitable target to treat chronic pain in females.


Asunto(s)
Epigénesis Genética/genética , Nocicepción/fisiología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Animales , Metilación de ADN/genética , Estradiol/farmacología , Femenino , Agonistas del GABA/administración & dosificación , Agonistas del GABA/farmacología , Ganglios Espinales/metabolismo , Imidazoles/farmacología , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos ICR , Ovariectomía , Dimensión del Dolor , Ratas , Ratas Wistar , Caracteres Sexuales
4.
J Nat Prod ; 84(3): 713-723, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32870011

RESUMEN

Zinagrandinolide E (1, ZGE) is an elemanolide with antinociceptive action isolated from Zinnia grandiflora (Asteraceae), valued in North México and southwestern United States for pain relief. Herein, we report the anti-inflammatory and antiallodynic action of ZGE (1) in carrageenan-induced inflammation and tactile allodynia in mice and in a neuropathic pain model in hyperglycemic mice. Local peripheral administration of ZGE (1-30 µg/paw) induced dose-dependent acute anti-inflammatory and antiallodynic effects. The anti-inflammatory effect was comparable to diclofenac (30 µg/paw). Intrathecal (i.t.) administration of ZGE (30 µg) in acute experiments did not affect carrageenan-induced inflammation but significantly reduced tactile allodynia in a dose-dependent fashion. In long-term experiments (15 or 6 days), using two different scheme treatments (pretreatment or post-treatment), ZGE (3-30 µg/paw) showed antiallodynic but not anti-inflammatory action. Local peripheral (3-30 µg/paw) or intrathecal (3-30 µg) administration of ZGE partially reversed tactile allodynia in hyperglycemic mice, better or comparable, respectively, with those of pregabalin (30 µg/paw or 30 µg i.t.). The effects were dose-dependent. According to the pharmacological tools employed, the anti-inflammatory and antiallodynic activities of ZGE are multitarget; these involve the opioidergic, serotoninergic, and GABAergic systems, as well as the NO-cGMP-ATP-sensitive K+ channel signaling pathway.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Asteraceae/química , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , México , Ratones
5.
BMC Neurosci ; 20(1): 1, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602386

RESUMEN

BACKGROUND: Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. RESULTS: Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3-100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3-3 µg/paw), HC-030031 (100-316 µg/paw) and SKF-96365 (10-30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3-30 µg/paw), HC-030031 (100-1000 µg/paw) and SKF-96365 (10-100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-ß-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. CONCLUSIONS: Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hiperalgesia/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Acetanilidas/farmacología , Analgésicos/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cistationina betasintasa/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Femenino , Formaldehído , Hidroxilamina/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Imidazoles/farmacología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Purinas/farmacología , Ratas Wistar , Piel/inervación , Piel/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología , Sulfitos
6.
Mol Pain ; 14: 1744806918787427, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29921170

RESUMEN

Transcription factors are proteins that modulate the transcriptional rate of target genes in the nucleus in response to extracellular or cytoplasmic signals. Activating transcription factors 2 (ATF2) and 3 (ATF3) respond to environmental signals and maintain cellular homeostasis. There is evidence that inflammation and nerve injury modulate ATF2 and ATF3 expression. However, the function of these transcription factors in pain is unknown. The purpose of this study was to investigate the contribution of ATF2 and ATF3 to nerve injury-induced neuropathic pain. L5/6 spinal nerve ligation induced tactile allodynia and thermal hyperalgesia. Moreover, nerve damage enhanced ATF2 and ATF3 protein expression in injured L5/6 dorsal root ganglia and spinal cord but not in uninjured L4 dorsal root ganglia. Nerve damage also enhanced ATF2 immunoreactivity in dorsal root ganglia and spinal cord 7 to 21 days post-injury. Repeated intrathecal post-treatment with a small-interfering RNA targeted against ATF2 (ATF2 siRNA) or anti-ATF2 antibody partially reversed tactile allodynia and thermal hyperalgesia. In contrast, ATF3 siRNA or anti-ATF3 antibody did not modify nociceptive behaviors. ATF2 immunoreactivity was found in dorsal root ganglia and spinal cord co-labeling with NeuN mainly in non-peptidergic (IB4+) but also in peptidergic (CGRP+) neurons. ATF2 was found mainly in small- and medium-sized neurons. These results suggest that ATF2, but not ATF3, is found in strategic sites related to spinal nociceptive processing and participates in the maintenance of neuropathic pain in rats.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Factor de Transcripción Activador 3/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 3/genética , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Regulación de la Expresión Génica , Lectinas/metabolismo , Masculino , Microscopía Confocal , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/patología , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/administración & dosificación , Ratas , Ratas Wistar , Nervios Espinales/metabolismo , Nervios Espinales/patología , Tacto/fisiología
7.
Horm Behav ; 97: 39-46, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29080671

RESUMEN

Fibromyalgia (FM) is a musculoskeletal chronic pain syndrome. Its prevalence in women is higher than in men possibly by hormonal factors given that symptoms are aggravated during sex hormone-related events, such as the premenstrual period, pregnancy, postpartum or menopause. The aim of the present study was to investigate whether hyperalgesia and allodynia, in reserpine-induced experimental FM, depend on sex, estrous cycle, ovariectomy and replacement with 17ß-estradiol. To fulfill this objective, we compared males, intact females with known estrous cycle phases and ovariectomized (OVX) rats treated with 17ß-estradiol. Data demonstrated that reserpine administration disrupted the normal estrous cycle and produced that all females entered metestrus/diestrus. In addition, this treatment leads to muscle hyperalgesia and tactile allodynia in a similar manner in male and intact female rats. However, the absence of ovarian hormones (in OVX rats) increased muscle nociception. 17ß-estradiol (2.5-10µg/rat) produced antihyperalgesic and antiallodynic effects 24h, but not 8h, after its administration, suggesting a genomic mechanism. The present results support the validity of the reserpine-induced FM model for searching alternatives of treatment, particularly during endocrine phases when pain is exacerbated such as menopause, and that 17ß-estradiol replacement might be useful.


Asunto(s)
Estradiol/farmacología , Ciclo Estral/metabolismo , Fibromialgia/metabolismo , Hiperalgesia/metabolismo , Nocicepción/efectos de los fármacos , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Menopausia/efectos de los fármacos , Ovariectomía , Dimensión del Dolor , Embarazo , Ratas , Ratas Wistar
8.
Behav Pharmacol ; 29(2 and 3-Spec Issue): 270-279, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28590304

RESUMEN

The aim of this study was to investigate the antinociceptive potential of (-)-epicatechin and the possible mechanisms of action involved in its antinociceptive effect. The carrageenan and formalin tests were used as inflammatory pain models. A plethysmometer was used to measure inflammation and L5/L6 spinal nerve ligation as a neuropathic pain model. Oral (-)-epicatechin reduced carrageenan-induced inflammation and nociception by about 59 and 73%, respectively, and reduced formalin- induced and nerve injury-induced nociception by about 86 and 43%, respectively. (-)-Epicatechin-induced antinociception in the formalin test was prevented by the intraperitoneal administration of antagonists: methiothepin (5-HT1/5 receptor), WAY-100635 (5-HT1A receptor), SB-224289 (5-HT1B receptor), BRL-15572 (5-HT1D receptor), SB-699551 (5-HT5A receptor), naloxone (opioid receptor), CTAP (µ opioid receptor), nor-binaltorphimine (κ opioid receptor), and 7-benzylidenenaltrexone (δ1 opioid receptor). The effect of (-)-epicatechin was also prevented by the intraperitoneal administration of L-NAME [nitric oxide (NO) synthase inhibitor], 7-nitroindazole (neuronal NO synthase inhibitor), ODQ (guanylyl cyclase inhibitor), glibenclamide (ATP-sensitive K channel blocker), 4-aminopyridine (voltage-dependent K channel blocker), and iberiotoxin (large-conductance Ca-activated K channel blocker), but not by amiloride (acid sensing ion channel blocker). The data suggest that (-)-epicatechin exerts its antinociceptive effects by activation of the NO-cyclic GMP-K channels pathway, 5-HT1A/1B/1D/5A serotonergic receptors, and µ/κ/δ opioid receptors.


Asunto(s)
Catequina/farmacología , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Analgésicos/farmacología , Animales , Carragenina/farmacología , Catequina/metabolismo , GMP Cíclico/metabolismo , Femenino , Naloxona/farmacología , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Manejo del Dolor/métodos , Dimensión del Dolor , Percepción del Dolor/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Opioides/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Nervios Espinales
9.
Drug Dev Res ; 79(1): 38-44, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29314177

RESUMEN

Preclinical Research & Development The objective of the present study was to evaluate the tapentadol-diclofenac combination in three dose-ratios in the mouse acetic acid-induced visceral pain and their ulcerogenic activity on the stomachal mucous. Dose-response curves were generated for tapentadol, diclofenac, and their combination in the acetic acid-induced writhing test in mice. Moreover, the stomachs of animals were surgically removal and gastrointestinal ulcerogenic action of the combination was assessed. The isobolographic analysis, interaction index, and ANOVA were used to analyze the data. The isobolographic analysis and interaction index showed a similar antinociceptive activity for the three combinations of the analgesic mixture. Moreover, tapentadol and the proportions 1:1 or 3:1 of the analgesic combination caused a mild gastrointestinal damage. These data indicate that the systemic co-administration of tapentadol and diclofenac produced a synergistic interaction in the acetic acid-induced visceral pain test with an acceptable gastric damage profile in mice.


Asunto(s)
Analgésicos/uso terapéutico , Diclofenaco/uso terapéutico , Fenoles/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Ácido Acético , Animales , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Masculino , Ratones , Estómago/efectos de los fármacos , Estómago/patología , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/patología , Tapentadol , Dolor Visceral/inducido químicamente
10.
Drug Dev Res ; 78(8): 371-380, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28868795

RESUMEN

Preclinical Research Treatment of neuropathic pain is an area of largely unmet medical need. Pregabalin and gabapentin are anticonvulsants widely used for the treatment of neuropathic pain. Unfortunately, these drugs are only effective in 50-60% of the treated patients. In addition, both drugs have substantial side effects. Several studies have reported that ultralow doses of opioid receptor antagonists can induce analgesia and enhance the analgesic effect of opioids in rodents and humans. The objective of the present study was to assess the antiallodynic synergistic interaction between gabapentinoids and naltrexone in rats. Oral administration of pregabalin (ED50 = 2.79 ± 0.16 mg/kg) or gabapentin (ED50 = 21.04 ± 2.87 mg/kg) as well as intrathecal naltrexone (ED50 = 0.11 ± 0.02 ng) reduced in a dose-dependent manner tactile allodynia in rats. Maximal antiallodynic effects (∼100%) were reached with 30 mg/kg of pregabalin, 300 mg/kg of gabapentin or 0.5 ng of naltrexone. Co-administration of pregabalin or gabapentin and naltrexone in a fixed-dose ratio (1:1) remarkably reduced spinal nerve ligation-induced tactile allodynia showing a synergistic interaction. The data indicate that combinations of pregabalin or gabapentin and ultra-low doses of naltrexone are able to reduce tactile allodynia in neuropathic rats with lower doses that those used when drugs are given individually and with an improved side effects profile. Drug Dev Res 78 : 371-380, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Aminas/administración & dosificación , Ácidos Ciclohexanocarboxílicos/administración & dosificación , Hiperalgesia/tratamiento farmacológico , Naltrexona/administración & dosificación , Neuralgia/tratamiento farmacológico , Pregabalina/administración & dosificación , Ácido gamma-Aminobutírico/administración & dosificación , Administración Oral , Aminas/uso terapéutico , Animales , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Gabapentina , Humanos , Inyecciones Espinales , Naltrexona/uso terapéutico , Neuralgia/etiología , Umbral del Dolor/efectos de los fármacos , Pregabalina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/uso terapéutico
11.
Drug Dev Res ; 78(1): 63-70, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27987222

RESUMEN

Preclinical Research The aim of the present study was to evaluate the antinoceptive interaction between the opioid analgesic, tapentadol, and the NSAID, ketorolac, in the mouse orofacial formalin test. Tapentadol or ketorolac were administered ip 15 min before orofacial formalin injection. The effect of the individual drugs was used to calculate their ED50 values and different proportions (tapentadol-ketorolac in 1:1, 3:1, and 1:3) were assayed in the orofacial test using isobolographic analysis and interaction index to evaluate the interaction between the drugs. The combination showed antinociceptive synergistic and additive effects in the first and second phase of the orofacial formalin test. Naloxone and glibenclamide were used to evaluate the possible mechanisms of action and both partially reversed the antinociception produced by the tapentadol-ketorolac combination. These data suggest that the mixture of tapentadol and ketorolac produces additive or synergistic interactions via opioid receptors and ATP-sensitive K+ channels in the orofacial formalin-induced nociception model in mice. Drug Dev Res 78 : 63-70, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Analgésicos/administración & dosificación , Dolor Facial/tratamiento farmacológico , Canales KATP/metabolismo , Ketorolaco/administración & dosificación , Fenoles/administración & dosificación , Receptores Opioides/metabolismo , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Dolor Facial/inducido químicamente , Dolor Facial/metabolismo , Formaldehído/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Ketorolaco/farmacología , Ratones , Fenoles/farmacología , Tapentadol
12.
Mol Pain ; 11: 41, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26130088

RESUMEN

BACKGROUND: Calcium-activated chloride channels (CaCCs) activation induces membrane depolarization by increasing chloride efflux in primary sensory neurons that can facilitate action potential generation. Previous studies suggest that CaCCs family members bestrophin-1 and anoctamin-1 are involved in inflammatory pain. However, their role in neuropathic pain is unclear. In this investigation we assessed the involvement of these CaCCs family members in rats subjected to the L5/L6 spinal nerve ligation. In addition, anoctamin-1 and bestrophin-1 mRNA and protein expression in dorsal root ganglion (DRG) and spinal cord was also determined in the presence and absence of selective inhibitors. RESULTS: L5/L6 spinal nerve ligation induced mechanical tactile allodynia. Intrathecal administration of non-selective CaCCs inhibitors (NPPB, 9-AC and NFA) dose-dependently reduced tactile allodynia. Intrathecal administration of selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) also dose-dependently diminished tactile allodynia and thermal hyperalgesia. Anoctamin-1 and bestrophin-1 mRNA and protein were expressed in the dorsal spinal cord and DRG of naïve, sham and neuropathic rats. L5/L6 spinal nerve ligation rose mRNA and protein expression of anoctamin-1, but not bestrophin-1, in the dorsal spinal cord and DRG from day 1 to day 14 after nerve ligation. In addition, repeated administration of CaCCs inhibitors (T16Ainh-A01, CaCCinh-A01 or NFA) or anti-anoctamin-1 antibody prevented spinal nerve ligation-induced rises in anoctamin-1 mRNA and protein expression. Following spinal nerve ligation, the compound action potential generation of putative C fibers increased while selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) attenuated such increase. CONCLUSIONS: There is functional anoctamin-1 and bestrophin-1 expression in rats at sites related to nociceptive processing. Blockade of these CaCCs suppresses compound action potential generation in putative C fibers and lessens established tactile allodynia. As CaCCs activity contributes to neuropathic pain maintenance, selective inhibition of their activity may function as a tool to generate analgesia in nerve injury pain states.


Asunto(s)
Canales de Cloruro/metabolismo , Neuralgia/metabolismo , Nervios Espinales/patología , Animales , Anoctamina-1 , Bestrofinas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Femenino , Hiperalgesia/complicaciones , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Inyecciones Espinales , Ligadura , Actividad Motora , Conducción Nerviosa , Neuralgia/complicaciones , Neuralgia/patología , Neuralgia/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/fisiopatología , Nervios Espinales/lesiones , Nervios Espinales/fisiopatología
13.
Drug Dev Res ; 76(1): 31-39, 2015 02.
Artículo en Inglés | MEDLINE | ID: mdl-25620128

RESUMEN

Preclinical Research This work was performed to assess the effects of intrathecal serotonin 2B (5-HT2B ) receptor antagonists in rats with neuropathic pain. With RS-127445, its effect was also determined on 5-HT2B receptor expression. Neuropathic pain was induced by L5/L6 spinal nerve ligation. Western blotting was used to determine 5-HT2B receptor expression. Dose-response curves with the 5-HT2B receptor antagonists 2-amino-4-(4-fluoronaphth-1-yl)-6-isopropylpyridine (RS-127445, 1-100 nmol) and 1-[(2-chloro-3,4-dimethoxyphenyl)methyl]-2,3,4,9-tetrahydro-6-methyl-1H-pyrido[3,4-b]indole hydrochloride (LY-266097, 1-100 nmol) were performed in rats. Tactile allodynia of the left hind paw (ipsilateral) was assessed for 8 h after compound administration. Intrathecal injection of the 5-HT2B receptor antagonists RS-127445 and LY-266097 diminished spinal nerve ligation-induced allodynia. In contrast, intrathecal injection of the 5-HT2 receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 10 nmol) did not modify tactile allodynia induced by nerve ligation. L5/L6 nerve ligation increased expression of the 5-HT2B receptors in the ipsilateral, but not contralateral, dorsal root ganglia. Furthermore, nerve injury also enhanced 5-HT2B receptor expression in the ipsilateral dorsal part of the spinal cord. Intrathecal treatment with RS-127445 (100 nmol) diminished spinal nerve injury-induced increased expression of 5-HT2B receptors in dorsal root ganglia and spinal cord. Our results imply that spinal 5-HT2B receptors are present on sites related to nociception and participate in neuropathic pain. © 2014 Wiley Periodicals, Inc.

14.
Drug Dev Res ; 76(8): 442-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26349482

RESUMEN

The aim of this study was to evaluate fosinopril-induced changes in hemodynamic parameters and tactile allodynia in a rat model of diabetes. Diabetes was induced by streptozotocin (STZ; 50 mg/kg, i.p.) in male Wistar rats. STZ produced hyperglycemia, weight loss, polydipsia, polyphagia, and polyuria as well as long-term arterial hypotension, bradycardia, and tactile allodynia at 10-12 weeks. Daily administration of the angiotensin converting enzyme inhibitor, fosinopril (25 mg/kg, p.o., for 11 weeks) partially reduced the loss of body weight, decreased hyperglycemia, and systolic blood pressure in diabetic rats. Likewise, systemic administration of fosinopril prevented the development and maintenance of tactile allodynia in STZ-induced diabetic rats. These data suggest that fosinopril may have a role in the pharmacotherapy of diabetic neuropathic pain.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Fosinopril/farmacología , Hiperalgesia/prevención & control , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/sangre , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/fisiopatología , Hemodinámica/efectos de los fármacos , Hiperalgesia/sangre , Hiperalgesia/fisiopatología , Hiperglucemia/sangre , Hiperglucemia/inducido químicamente , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/fisiopatología , Insulina/sangre , Masculino , Ratas , Ratas Wistar , Pérdida de Peso/efectos de los fármacos
15.
Mol Pain ; 10: 29, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24886406

RESUMEN

BACKGROUND: The participation of spinal P2X receptors in neuropathic pain is well recognized. However, the role of P2Y receptors has been less studied. The purpose of this study was to investigate the contribution of spinal P2Y6,11 receptors following peripheral nerve damage induced by spinal nerve ligation. In addition, we determined the expression of P2Y6,11 receptors in the dorsal spinal cord in presence of the selective P2Y6,11 receptors antagonists. Furthermore, we evaluated the participation of spinal microglia and astrocytes in the pronociceptive role of P2Y6,11 receptors. RESULTS: Spinal administration of the selective P2Y6 (MRS2578, 10-100 µM) and P2Y11 (NF340, 0.3-30 µM) receptor antagonists reduced tactile allodynia in spinal nerve ligated rats. Nerve injury increased the expression of P2Y6,11 receptors at 7, 14 and 21 days after injury. Furthermore, intrathecal administration of MRS2578 (100 µM/day) and NF340 (30 µM/day) for 3 days significantly reduced spinal nerve injury-induced increase in P2Y6,11 receptors expression, respectively. Spinal treatment (on day 14 after injury) with minocycline (100 µg/day) or fluorocitrate (1 nmol/day) for 7 days reduced tactile allodynia and spinal nerve injury-induced up-regulation in Iba-1 and GFAP, respectively. In addition, minocycline reduced nerve injury-induced up-regulation in P2Y6,11 receptors whereas that fluorocitrate diminished P2Y11, but not P2Y6, receptors up-regulation. Intrathecal treatment (on day 21 after injury) with the selective P2Y6 (PSB0474, 3-30 µM) and P2Y11 (NF546, 1-10 µM) receptor agonists produced remarkable tactile allodynia in nerve ligated rats previously treated with minocycline or fluorocitrate for 7 days. CONCLUSIONS: Our data suggest that spinal P2Y6 is present in spinal microglia while P2Y11 receptors are present in both spinal microglia and astrocytes, and both receptors are up-regulated in rats subjected to spinal nerve injury. In addition, our data suggest that the spinal P2Y6 and P2Y11 receptors participate in the maintenance of neuropathic pain.


Asunto(s)
Neuralgia/patología , Neuroglía/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Médula Espinal/patología , Animales , Citratos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Lateralidad Funcional , Expresión Génica/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Isotiocianatos/farmacología , Minociclina/farmacología , Neuralgia/complicaciones , Dimensión del Dolor , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Nervios Espinales/lesiones , Tiourea/análogos & derivados , Tiourea/farmacología , Regulación hacia Arriba
16.
Bioorg Med Chem ; 22(6): 1797-803, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24582401

RESUMEN

Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (Ca(V)) channels in its pathophysiology has justified the use of drugs that bind the Ca(V) channel α2δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α2δ inhibits nerve injury-induced trafficking of the α1 pore forming subunits of Ca(V) channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure-activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type Ca(V) channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1-3 h) of GZ4 effects suggests also a direct inhibition of Ca(2+) currents acting on cell surface channels.


Asunto(s)
Adamantano/análogos & derivados , Analgésicos/farmacología , Canales de Calcio Tipo N/metabolismo , Neuralgia/tratamiento farmacológico , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacología , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
17.
BMC Complement Altern Med ; 14: 129, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24708659

RESUMEN

BACKGROUND: Painful neuropathy is the most common and debilitating complication of diabetes and results in hyperalgesia and allodynia. Hyperglycemia clearly plays a key role in the development and progression of diabetic neuropathy. Current therapeutic approaches are only partially successful and they are only thought to reduce the pain associated with peripheral neuropathy. Some natural products offer combined antioxidant, anti-inflammatory and antinociceptive properties that may help to treat in a more integrative manner this condition. In this regard, the purpose of this study was to investigate the antineuropathic effect of 7-hydroxy-3,4-dihydrocadalin in streptozotocin-induced diabetic rats and mice without glucose control as well as the possible mechanism of action involved in this effect. METHODS: Rats and mice were injected with 50 or 200 mg/kg streptozotocin, respectively, to produce hyperglycemia. The formalin test and von Frey filaments were used to assess the nociceptive activity. Rota-rod was utilized to measure motor activity and malondialdehyde assay to determine anti-oxidative properties. RESULTS: After 3 weeks of diabetes induction, chemical hyperalgesia was observed in streptozotocin-injected rats. Oral acute administration of 7-hydroxy-3,4-dihydrocadalin (0.3-30 mg/kg) decreased in a dose-dependent manner formalin-evoked hyperalgesia in diabetic rats. In addition, methiothepin (non-selective 5-HT receptor antagonist, 1 mg/kg, i.p.) and ODQ (guanylyl cyclase inhibitor, 2 mg/kg, i.p.), but not naltrexone (opioid receptor antagonist, 1 mg/kg, s.c.), prevented 7-hydroxy-3,4-dihydrocadalin-induced antihyperalgesic effect. The anti-hyperalgesic effect of 7-hydroxy-3,4-dihydrocadalin was similar to that produced by pregabalin (10 mg/kg, p.o.). Furthermore, oral acute administration of 7-hydroxy-3,4-dihydrocadalin (30 mg/kg) reduced streptozotocin-induced changes in malondialdehyde concentration from plasma samples. Unlike pregabalin, 7-hydroxy-3,4-dihydrocadalin did not affect motor activity. Six weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. At this time, oral administration of 7-hydroxy-3,4-dihydrocadalin (30 mg/kg) or pregabalin (10 mg/kg) reduced in a similar way tactile allodynia in diabetic rats. Finally, chronic oral administration of 7-hydroxy-3,4-dihydrocadalin (30-300 mg/kg, 3 times/week, during 6 weeks), significantly prevented the development of mechanical hyperalgesia and allodynia in streptozotocin-induced diabetic mice. CONCLUSIONS: Data suggests that 7-hydroxy-3,4-dihydrocadalin has acute and chronic effects in painful diabetic neuropathy. This effect seems to involve antioxidant properties as well as activation of 5-HT receptors and inhibition of guanylyl cyclase enzyme.


Asunto(s)
Analgésicos/administración & dosificación , Asteraceae/química , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Sesquiterpenos/administración & dosificación , Animales , Neuropatías Diabéticas/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Ratas , Ratas Wistar , Estreptozocina
18.
Methods Cell Biol ; 188: 73-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880529

RESUMEN

Neuropathic pain, defined as the most terrible of all tortures, which a nerve wound may inflict, is a common chronic painful condition caused by gradual damage or dysfunction of the somatosensory nervous system. As with many chronic diseases, neuropathic pain has a profound economic and emotional impact worldwide and represents a major public health issue from a treatment standpoint. This condition involves multiple sensory symptoms including impaired transmission and perception of noxious stimuli, burning, shooting, spontaneous pain, mechanical or thermal allodynia and hyperalgesia. Current pharmacological options for the treatment of neuropathic pain are limited, ineffective and have unacceptable side effects. In this framework, a deeper understanding of the pathophysiology and molecular mechanisms associated with neuropathic pain is key to the development of promising new therapeutical approaches. For this purpose, a plethora of experimental models that mimic common clinical features of human neuropathic pain have been characterized in rodents, with the spinal nerve ligation (SNL) model being one of the most widely used. In this chapter, we provide a detailed surgical procedure of the SNL model used to induce neuropathic pain in rats and mice. We further describe the behavioral approaches used for stimulus-evoked and spontaneous pain assessment in rodents. Finally, we demonstrate that our SNL model induces multiple pain behaviors in rats and mice.


Asunto(s)
Modelos Animales de Enfermedad , Neuralgia , Nervios Espinales , Animales , Neuralgia/patología , Neuralgia/fisiopatología , Neuralgia/etiología , Ligadura/métodos , Ligadura/efectos adversos , Ratas , Ratones , Hiperalgesia/fisiopatología , Dimensión del Dolor/métodos , Masculino
19.
Pain ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38595206

RESUMEN

ABSTRACT: Nociplastic pain, characterized by abnormal pain processing without an identifiable organic cause, affects a significant portion of the global population. Unfortunately, current pharmacological treatments for this condition often prove ineffective, prompting the need to explore new potential targets for inducing analgesic effects in patients with nociplastic pain. In this context, toll-like receptors (TLRs), known for their role in the immune response to infections, represent promising opportunities for pharmacological intervention because they play a relevant role in both the development and maintenance of pain. Although TLRs have been extensively studied in neuropathic and inflammatory pain, their specific contributions to nociplastic pain remain less clear, demanding further investigation. This review consolidates current evidence on the connection between TLRs and nociplastic pain, with a specific focus on prevalent conditions like fibromyalgia, stress-induced pain, sleep deprivation-related pain, and irritable bowel syndrome. In addition, we explore the association between nociplastic pain and psychiatric comorbidities, proposing that modulating TLRs can potentially alleviate both pain syndromes and related psychiatric disorders. Finally, we discuss the potential sex differences in TLR signaling, considering the higher prevalence of nociplastic pain among women. Altogether, this review aims to shed light on nociplastic pain, its underlying mechanisms, and its intriguing relationship with TLR signaling pathways, ultimately framing the potential therapeutic role of TLRs in addressing this challenging condition.

20.
Eur J Pharmacol ; 974: 176616, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679122

RESUMEN

The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17ß-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17ß-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17ß-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17ß-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17ß-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.


Asunto(s)
Estradiol , Neuralgia , Receptores de GABA-A , Médula Espinal , Animales , Femenino , Estradiol/farmacología , Receptores de GABA-A/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Masculino , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ovariectomía , Ratas Sprague-Dawley , Caracteres Sexuales , Receptor alfa de Estrógeno/metabolismo , Pirazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA