Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(43): 21780-21788, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591215

RESUMEN

Bacterial outer membrane vesicles (OMVs) represent an interesting vaccine platform for their built-in adjuvanticity and simplicity of production process. Moreover, OMVs can be decorated with foreign antigens using different synthetic biology approaches. However, the optimal OMV engineering strategy, which should guarantee the OMV compartmentalization of most heterologous antigens in quantities high enough to elicit protective immune responses, remains to be validated. In this work we exploited the lipoprotein transport pathway to engineer OMVs with foreign proteins. Using 5 Staphylococcus aureus protective antigens expressed in Escherichia coli as fusions to a lipoprotein leader sequence, we demonstrated that all 5 antigens accumulated in the vesicular compartment at a concentration ranging from 5 to 20% of total OMV proteins, suggesting that antigen lipidation could be a universal approach for OMV manipulation. Engineered OMVs elicited high, saturating antigen-specific antibody titers when administered to mice in quantities as low as 0.2 µg/dose. Moreover, the expression of lipidated antigens in E. coli BL21(DE3)ΔompAΔmsbBΔpagP was shown to affect the lipopolysaccharide structure, with the result that the TLR4 agonist activity of OMVs was markedly reduced. These results, together with the potent protective activity of engineered OMVs observed in mice challenged with S. aureus Newman strain, makes the 5-combo-OMVs a promising vaccine candidate to be tested in clinics.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Vesículas Extracelulares/inmunología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/inmunología , Animales , Membrana Externa Bacteriana/inmunología , Membrana Externa Bacteriana/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Lipopolisacáridos/inmunología , Ratones , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología
2.
Mol Cell Proteomics ; 16(7): 1348-1364, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28483926

RESUMEN

In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides.


Asunto(s)
Aggregatibacter actinomycetemcomitans/metabolismo , Escherichia coli/genética , Lipoproteínas/metabolismo , Neisseria meningitidis/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Lipoproteínas/genética , Neisseria meningitidis/genética , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformación Bacteriana
3.
Proc Natl Acad Sci U S A ; 112(20): 6431-6, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941374

RESUMEN

The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Streptococcus agalactiae/genética , Adulto , Secuencia de Bases , Análisis por Conglomerados , Genoma Bacteriano/genética , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Ontario/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Serogrupo , Especificidad de la Especie , Texas/epidemiología
4.
Proc Natl Acad Sci U S A ; 112(12): 3680-5, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775551

RESUMEN

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/química , Receptor Toll-Like 7/química , Absceso/patología , Inmunidad Adaptativa , Animales , Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Antígenos/inmunología , Humanos , Ratones , Modelos Animales , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus , Células TH1/inmunología
5.
Microb Cell Fact ; 16(1): 68, 2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438207

RESUMEN

BACKGROUND: The exploitation of the CRISPR/Cas9 machinery coupled to lambda (λ) recombinase-mediated homologous recombination (recombineering) is becoming the method of choice for genome editing in E. coli. First proposed by Jiang and co-workers, the strategy has been subsequently fine-tuned by several authors who demonstrated, by using few selected loci, that the efficiency of mutagenesis (number of mutant colonies over total number of colonies analyzed) can be extremely high (up to 100%). However, from published data it is difficult to appreciate the robustness of the technology, defined as the number of successfully mutated loci over the total number of targeted loci. This information is particularly relevant in high-throughput genome editing, where repetition of experiments to rescue missing mutants would be impractical. This work describes a "brute force" validation activity, which culminated in the definition of a robust, simple and rapid protocol for single or multiple gene deletions. RESULTS: We first set up our own version of the CRISPR/Cas9 protocol and then we evaluated the mutagenesis efficiency by changing different parameters including sequence of guide RNAs, length and concentration of donor DNAs, and use of single stranded and double stranded donor DNAs. We then validated the optimized conditions targeting 78 "dispensable" genes. This work led to the definition of a protocol, featuring the use of double stranded synthetic donor DNAs, which guarantees mutagenesis efficiencies consistently higher than 10% and a robustness of 100%. The procedure can be applied also for simultaneous gene deletions. CONCLUSIONS: This work defines for the first time the robustness of a CRISPR/Cas9-based protocol based on a large sample size. Since the technical solutions here proposed can be applied to other similar procedures, the data could be of general interest for the scientific community working on bacterial genome editing and, in particular, for those involved in synthetic biology projects requiring high throughput procedures.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/genética , Edición Génica , Familia de Multigenes , Eliminación de Gen , Genoma Bacteriano , Recombinación Homóloga , Mutagénesis , ARN Guía de Kinetoplastida , Recombinasas/metabolismo , Biología Sintética/métodos
6.
Mol Cell Proteomics ; 14(2): 418-29, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25368410

RESUMEN

New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called "Protectome space," and using such "protective signatures" for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.


Asunto(s)
Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Proteoma/inmunología , 5'-Nucleotidasa/metabolismo , Animales , Proteínas Bacterianas/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Neisseria meningitidis Serogrupo B/inmunología , Señales de Clasificación de Proteína , Reproducibilidad de los Resultados , Staphylococcus aureus/inmunología , Streptococcus agalactiae/inmunología
7.
Mol Cell Proteomics ; 14(8): 2138-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018414

RESUMEN

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lipoproteínas/metabolismo , Microdominios de Membrana/metabolismo , Streptococcus pyogenes/metabolismo , Medios de Cultivo , Células HEK293 , Humanos , Microdominios de Membrana/efectos de los fármacos , Peso Molecular , Mutación/genética , Penicilinas/farmacología , Programas Informáticos , Streptococcus pyogenes/efectos de los fármacos , Receptor Toll-Like 2/metabolismo
8.
J Biol Chem ; 290(15): 9521-32, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25666613

RESUMEN

The production of capsular polysaccharides (CPS) or secreted exopolysaccharides is ubiquitous in bacteria, and the Wzy pathway constitutes a prototypical mechanism to produce these structures. Despite the differences in polysaccharide composition among species, a group of proteins involved in this pathway is well conserved. Streptococcus agalactiae (group B Streptococcus; GBS) produces a CPS that represents the main virulence factor of the bacterium and is a prime target in current vaccine development. We used this human pathogen to investigate the roles and potential interdependencies of the conserved proteins CpsABCD encoded in the cps operon, by developing knock-out and functional mutant strains. The mutant strains were examined for CPS quantity, size, and attachment to the cell surface as well as CpsD phosphorylation. We observed that CpsB, -C, and -D compose a phosphoregulatory system where the CpsD autokinase phosphorylates its C-terminal tyrosines in a CpsC-dependent manner. These Tyr residues are also the target of the cognate CpsB phosphatase. An interaction between CpsD and CpsC was observed, and the phosphorylation state of CpsD influenced the subsequent action of CpsC. The CpsC extracellular domain appeared necessary for the production of high molecular weight polysaccharides by influencing CpsA-mediated attachment of the CPS to the bacterial cell surface. In conclusion, although having no impact on cps transcription or the synthesis of the basal repeating unit, we suggest that these proteins are fine-tuning the last steps of CPS biosynthesis (i.e. the balance between polymerization and attachment to the cell wall).


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Operón , Polímeros/metabolismo , Streptococcus agalactiae/metabolismo , Animales , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/ultraestructura , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Immunoblotting , Ratones , Microscopía Inmunoelectrónica , Mutación , Fosforilación , Polisacáridos Bacterianos/metabolismo , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Tirosina/genética , Tirosina/metabolismo , Factores de Virulencia/genética
9.
Clin Infect Dis ; 63(6): 746-753, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402816

RESUMEN

BACKGROUND: Group B Streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. A vaccine targeting pregnant women could protect infants through placentally transferred antibodies. The association between GBS maternal antibody concentrations and the risk of neonatal infection has been investigated in US and African populations. Here we studied naturally acquired immunoglobulin G (IgG) responses to GBS capsular polysaccharides (CPS) and pilus proteins in European pregnant women. METHODS: Maternal sera were prospectively collected in 8 EU countries from 473 GBS non-colonized and 984 colonized pregnant women who delivered healthy neonates and from 153 mothers of infants with GBS disease. GBS strains from these colonized women and infected infants were obtained in parallel and their capsular and pilus types were identified by serological and molecular methods. Maternal serum concentrations of IgG anti- Ia, -Ib, -III and -V polysaccharides and anti-BP-1, -AP1-2a and -BP-2b pilus proteins were determined by enzyme-linked immunosorbent assay. Antibody functional activity was quantified by Opsonophagocytic Killing Assay. RESULTS: Antibody levels against CPS and pilus proteins were significantly higher in GBS colonized women delivering healthy babies than in mothers of neonates with GBS disease or non-colonized women. Moreover, maternal anti-capsular IgG concentrations showed a significant correlation with functional titers measured by Opsonophagocytic Killing Assay. CONCLUSIONS: Maternal anti-capsular IgG concentrations above 1 µg/mL mediated GBS killing in vitro and were predicted to respectively reduce by 81% (95% confidence interval, 40%-100%) and 78% (45%-100%) the risk of GBS Ia and III early-onset disease in Europe.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Fimbrias Bacterianas/inmunología , Inmunidad Materno-Adquirida , Polisacáridos Bacterianos/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Europa (Continente)/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Embarazo , Estudios Prospectivos , Infecciones Estreptocócicas/epidemiología
10.
Br J Cancer ; 115(1): 40-51, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27328312

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents have limited efficacy. METHODS: The atypical cadherin FAT1 was discovered as a novel CRC-associated protein by using a monoclonal antibody (mAb198.3). FAT1 expression was assessed in CRC cells by immunohistochemistry (IHC), immunoblots, flow cytometry and confocal microscopy. In addition, in vitro and in vivo tumour models were done to assess FAT1 potential value for therapeutic applications. RESULTS: The study shows that FAT1 is broadly expressed in primary and metastatic CRC stages and detected by mAb198.3, regardless of KRAS and BRAF mutations. FAT1 mainly accumulates at the plasma membrane of cancer cells, whereas it is only marginally detected in normal human samples. Moreover, the study shows that FAT1 has an important role in cell invasiveness while it does not significantly influence apoptosis. mAb198.3 specifically recognises FAT1 on the surface of colon cancer cells and is efficiently internalised. Furthermore, it reduces cancer growth in a colon cancer xenograft model. CONCLUSIONS: This study provides evidence that FAT1 and mAb198.3 may offer new therapeutic opportunities for CRC including the tumours resistant to current EGFR-targeted therapies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Cadherinas/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Células HT29 , Humanos , Mutación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas ras/metabolismo
11.
J Biol Chem ; 289(34): 23437-48, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24990951

RESUMEN

The Group B Streptococcus capsular polysaccharide type IX was isolated and purified, and the structure of its repeating unit was determined. Type IX capsule → 4)[NeupNAc-α-(2 → 3)-Galp-ß-(1 → 4)-GlcpNAc-ß-(1 → 6)]-ß-GlcpNAc-(1 → 4)-ß-Galp-(1 → 4)-ß-Glcp-(1 → appears most similar to types VII and V, although it contains two GlcpNAc residues. Genetic analysis identified differences in cpsM, cpsO, and cpsI gene sequences as responsible for the differentiation between the three capsular polysaccharide types, leading us to hypothesize that type V emerged from a recombination event in a type IX background.


Asunto(s)
Evolución Molecular , Polisacáridos Bacterianos/química , Streptococcus agalactiae/química , Secuencia de Bases , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cartilla de ADN , Genes Bacterianos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Streptococcus agalactiae/genética
12.
Infect Immun ; 83(8): 3157-63, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26015481

RESUMEN

Staphylococcus aureus is a human bacterial pathogen causing a variety of diseases. The occurrence of multidrug-resistant strains of Staphylococcus aureus underlines the need for a vaccine. Defining immune correlates of protection may support the design of an effective vaccine. We used a murine Staphylococcus aureus infection model, in which bacteria were inoculated in an air pouch generated on the back of the animal. Analysis of the air-pouch content in mice immunized or not with an adjuvanted multiantigen vaccine formulation, four-component S. aureus vaccine (4C-Staph), prior to infection allowed us to measure bacteria, cytokines, and 4C-Staph-specific antibodies and to analyze host immune cells recruited to the infection site. Immunization with 4C-Staph resulted in accumulation of antigen-specific antibodies in the pouch and mitigated the infection. Neutrophils were the most abundant cells in the pouch, and they showed the upregulation of Fcγ receptor (FcγR) following immunization with 4C-Staph. Reduction of the infection was also obtained in mice immunized with 4C-Staph and depleted of neutrophils; these mice showed an increase in monocytes and macrophages. Upregulation of the FcγR and the presence of antigen-specific antibodies induced by immunization with 4C-Staph may contribute to increase bacterial opsonophagocytosis. Protection in neutropenic mice indicated that an effective vaccine could activate alternative protection mechanisms compensating for neutropenia, a condition often occurring in S. aureus-infected patients.


Asunto(s)
Monocitos/inmunología , Neutropenia/inmunología , Neutrófilos/inmunología , Receptores de IgG/genética , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización , Ratones , Ratones Endogámicos C57BL , Neutropenia/genética , Neutropenia/microbiología , Receptores de IgG/inmunología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Vacunas Estafilocócicas/administración & dosificación , Vacunas Estafilocócicas/genética , Staphylococcus aureus/genética
13.
FASEB J ; 28(4): 1780-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421400

RESUMEN

Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.


Asunto(s)
Proteínas Bacterianas/inmunología , Serina Endopeptidasas/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Biocatálisis , Western Blotting , Dominio Catalítico , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Electricidad Estática
14.
Infect Immun ; 82(7): 2890-901, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24778116

RESUMEN

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein).


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/inmunología , Streptococcus pyogenes/metabolismo , Antígenos Bacterianos , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/microbiología , Eliminación de Gen , Humanos , Lactococcus lactis/metabolismo , Unión Proteica , Streptococcus pyogenes/citología , Streptococcus pyogenes/genética
15.
Angiogenesis ; 17(4): 881-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903490

RESUMEN

Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.


Asunto(s)
Angiopoyetinas/metabolismo , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Neovascularización Patológica/metabolismo , Proteína 7 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Diferenciación Celular , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Medios de Cultivo Condicionados/química , Sistema Endocrino , Células Endoteliales/citología , Exosomas/metabolismo , Humanos , Inmunohistoquímica , Invasividad Neoplásica , Análisis de Secuencia por Matrices de Oligonucleótidos , Regulación hacia Arriba
16.
PLoS Comput Biol ; 9(6): e1003115, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825940

RESUMEN

The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Mapeo Epitopo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fagocitosis , Homología de Secuencia de Aminoácido , Streptococcus agalactiae/inmunología
17.
Mol Cell Proteomics ; 11(4): M111.015206, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22199230

RESUMEN

Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptococcus pyogenes/metabolismo , Cloruros/farmacología , Análisis por Matrices de Proteínas , Unión Proteica/efectos de los fármacos , Compuestos de Zinc/farmacología
18.
Mol Cell Proteomics ; 11(6): M111.015693, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22286755

RESUMEN

We propose an experimental strategy for highly accurate selection of candidates for bacterial vaccines without using in vitro and/or in vivo protection assays. Starting from the observation that efficacious vaccines are constituted by conserved, surface-associated and/or secreted components, the strategy contemplates the parallel application of three high throughput technologies, i.e. mass spectrometry-based proteomics, protein array, and flow-cytometry analysis, to identify this category of proteins, and is based on the assumption that the antigens identified by all three technologies are the protective ones. When we tested this strategy for Group A Streptococcus, we selected a total of 40 proteins, of which only six identified by all three approaches. When the 40 proteins were tested in a mouse model, only six were found to be protective and five of these belonged to the group of antigens in common to the three technologies. Finally, a combination of three protective antigens conferred broad protection against a panel of four different Group A Streptococcus strains. This approach may find general application as an accelerated and highly accurate path to bacterial vaccine discovery.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/administración & dosificación , Infecciones Estreptocócicas/prevención & control , Streptococcus pyogenes/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Análisis por Conglomerados , Femenino , Citometría de Flujo , Hemólisis , Humanos , Ratones , Faringitis/sangre , Faringitis/inmunología , Faringitis/microbiología , Análisis por Matrices de Proteínas , Proteoma/inmunología , Proteoma/metabolismo , Ovinos , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/metabolismo , Vacunación
19.
Biochem J ; 449(3): 683-93, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23113737

RESUMEN

Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Proteínas de Unión Periplasmáticas/química , Staphylococcus aureus/metabolismo , Factores de Virulencia/química , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Compuestos Férricos/metabolismo , Ferricromo/metabolismo , Genes Bacterianos , Humanos , Ácidos Hidroxámicos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/inmunología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Modelos Moleculares , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/inmunología , Proteínas de Unión Periplasmáticas/metabolismo , Estabilidad Proteica , Sideróforos/metabolismo , Vacunas Estafilocócicas/química , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Electricidad Estática , Transferrina/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
20.
Biochem J ; 455(3): 273-84, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23895222

RESUMEN

In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Proteoma/química , Staphylococcus aureus/metabolismo , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Minería de Datos , Ratones , Ratones Endogámicos , Proteoma/genética , Proteoma/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA