Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 116(5): 1201-1217, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597203

RESUMEN

Woodland strawberry (Fragaria vesca subsp. vesca) is a wild relative of cultivated strawberry (F. × ananassa) producing small and typically conical fruits with an intense flavor and aroma. The wild strawberry species, F. vesca, is a rich resource of genetic and metabolic variability, but its diversity remains largely unexplored and unexploited. In this study, we aim for an in-depth characterization of the fruit complex volatilome by GC-MS as well as the fruit size and shape using a European germplasm collection that represents the continental diversity of the species. We report characteristic volatilome footprints and fruit phenotypes of specific geographical areas. Thus, this study uncovers phenotypic variation linked to geographical distribution that will be valuable for further genetic studies to identify candidate genes or develop markers linked to volatile compounds or fruit shape and size traits.


Asunto(s)
Fragaria , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Fenotipo , Cromatografía de Gases y Espectrometría de Masas
2.
BMC Plant Biol ; 23(1): 241, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149574

RESUMEN

BACKGROUND: The biochemical makeup of grape berries at harvest is essential for wine quality and depends on a fine transcriptional regulation occurring during berry development. In this study, we conducted a comprehensive survey of transcriptomic and metabolomic changes occurring in different berry tissues and developmental stages of the ancient grapes Aglianico and Falanghina to establish the patterns of the secondary metabolites contributing to their wine aroma and investigate the underlying transcriptional regulation. RESULTS: Over two hundred genes related to aroma were found, of which 107 were differentially expressed in Aglianico and 99 in Falanghina. Similarly, 68 volatiles and 34 precursors were profiled in the same samples. Our results showed a large extent of transcriptomic and metabolomic changes at the level of isoprenoids (terpenes, norisoprenoids), green leaf volatiles (GLVs), and amino acid pathways, although the terpenoid metabolism was the most distinctive for Aglianico, and GLVs for Falanghina. Co-expression analysis that integrated metabolome and transcriptome data pinpointed 25 hub genes as points of biological interest in defining the metabolic patterns observed. Among them, three hub genes encoding for terpenes synthases (VvTPS26, VvTPS54, VvTPS68) in Aglianico and one for a GDP-L-galactose phosphorylase (VvGFP) in Falanghina were selected as potential active player underlying the aroma typicity of the two grapes. CONCLUSION: Our data improve the understanding of the regulation of aroma-related biosynthetic pathways of Aglianico and Falanghina and provide valuable metabolomic and transcriptomic resources for future studies in these varieties.


Asunto(s)
Transcriptoma , Vitis , Vitis/metabolismo , Frutas , Odorantes , Metaboloma , Terpenos/metabolismo
3.
Plant Biotechnol J ; 21(12): 2683-2697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749961

RESUMEN

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Asunto(s)
Aminoácidos de Cadena Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismo
4.
Plant Physiol ; 188(4): 2026-2038, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35078231

RESUMEN

Plants are frequently subjected to different combinations of abiotic stresses, such as high light (HL) intensity, and elevated temperatures. These environmental conditions pose a threat to agriculture production, affecting photosynthesis, and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources toward stress responses, and suppressing growth. Here we show that the primary metabolic response of Arabidopsis (Arabidopsis thaliana) plants to HL or heat stress (HS) is different from that of plants subjected to a combination of HL and HS (HL+HS). We further demonstrate that the combined stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids coupled with decreased levels of metabolites participating in the tricarboxylic acid cycle. Among the amino acids exclusively accumulated during HL+HS, we identified the nonproteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis (GLUTAMATE DESCARBOXYLASE 3 [gad3]) as well as mutants impaired in autophagy (autophagy-related proteins 5 and 9 [atg5 and atg9]), revealed that GABA plays a key role in the acclimation of plants to HL+HS, potentially by promoting autophagy. Taken together, our findings identify a role for GABA in regulating plant responses to combined stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aclimatación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Estrés Fisiológico , Ácido gamma-Aminobutírico/metabolismo
5.
J Exp Bot ; 74(20): 6369-6390, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37294268

RESUMEN

Anthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.5 ºC lower in white- compared to black-berried Tempranillo. An RNA-seq study combined with targeted and untargeted metabolomics revealed that ripening fruits of white-berried variants were characterized by the up-regulation of photosynthesis-related and other light-responsive genes and by their higher accumulation of specific terpene aroma precursors, fatty acid-derived aldehyde volatiles, and phenylpropanoid precursor amino acids. MYBA1-MYBA2 function proved essential for flavonol trihydroxylation in black-berried somatic variants, which were also characterized by enhanced expression of pathogen defence genes in the berry skin and increased accumulation of C6-derived alcohol and ester volatiles and γ-aminobutyric acid. Collectively, our results indicate that anthocyanin depletion has side-effects on grape composition by altering the internal microenvironment of the berry and the partitioning of the phenylpropanoid pathway. Our findings show how fruit colour can condition other fruit features, such as flavour potential and stress homeostasis.


Asunto(s)
Antocianinas , Vitis , Antocianinas/metabolismo , Vitis/genética , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Odorantes , Color
6.
J Exp Bot ; 74(18): 5896-5916, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37527560

RESUMEN

European traditional tomato varieties have been selected by farmers given their consistent performance and adaptation to local growing conditions. Here we developed a multipurpose core collection, comprising 226 accessions representative of the genotypic, phenotypic, and geographical diversity present in European traditional tomatoes, to investigate the basis of their phenotypic variation, gene×environment interactions, and stability for 33 agro-morphological traits. Comparison of the traditional varieties with a modern reference panel revealed that some traditional varieties displayed excellent agronomic performance and high trait stability, as good as or better than that of their modern counterparts. We conducted genome-wide association and genome-wide environment interaction studies and detected 141 quantitative trait loci (QTLs). Out of those, 47 QTLs were associated with the phenotype mean (meanQTLs), 41 with stability (stbQTLs), and 53 QTL-by-environment interactions (QTIs). Most QTLs displayed additive gene actions, with the exception of stbQTLs, which were mostly recessive and overdominant QTLs. Both common and specific loci controlled the phenotype mean and stability variation in traditional tomato; however, a larger proportion of specific QTLs was observed, indicating that the stability gene regulatory model is the predominant one. Developmental genes tended to map close to meanQTLs, while genes involved in stress response, hormone metabolism, and signalling were found within regions affecting stability. A total of 137 marker-trait associations for phenotypic means and stability were novel, and therefore our study enhances the understanding of the genetic basis of valuable agronomic traits and opens up a new avenue for an exploitation of the allelic diversity available within European traditional tomato germplasm.


Asunto(s)
Solanum lycopersicum , Mapeo Cromosómico , Solanum lycopersicum/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo
7.
Plant Biotechnol J ; 20(8): 1578-1590, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35514036

RESUMEN

Transcriptional regulators based on CRISPR architecture expand our ability to reprogramme endogenous gene expression in plants. One of their potential applications is the customization of plant metabolome through the activation of selected enzymes in a given metabolic pathway. Using the previously described multiplexable CRISPR activator dCasEV2.1, we assayed the selective enrichment in Nicotiana benthamiana leaves of four different flavonoids, namely, naringenin, eriodictyol, kaempferol, and quercetin. After careful selection of target genes and guide RNAs combinations, we created successful activation programmes for each of the four metabolites, each programme activating between three and seven genes, and with individual gene activation levels ranging from 4- to 1500-fold. Metabolic analysis of the flavonoid profiles of each multigene activation programme showed a sharp and selective enrichment of the intended metabolites and their glycosylated derivatives. Remarkably, principal component analysis of untargeted metabolic profiles clearly separated samples according to their activation treatment, and hierarchical clustering separated the samples into five groups, corresponding to the expected four highly enriched metabolite groups, plus an un-activated control. These results demonstrate that dCasEV2.1 is a powerful tool for re-routing metabolic fluxes towards the accumulation of metabolites of interest, opening the door for the custom-made design of metabolic contents in plants.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Hojas de la Planta , Flavonoides , Metaboloma , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
8.
Plant Physiol ; 186(2): 836-852, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33724398

RESUMEN

Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Azúcares/metabolismo , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Botrytis/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Oryza/microbiología , Oryza/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pythium/fisiología , Estrés Fisiológico , Vitis/microbiología , Vitis/fisiología , Xanthomonas/fisiología
9.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35358313

RESUMEN

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Asunto(s)
Solanum lycopersicum , Alelos , Agricultores , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Solanum lycopersicum/genética , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Plant Cell Rep ; 41(9): 1843-1852, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35773498

RESUMEN

KEY MESSAGE: We have established a DNA-free genome editing method via ribonucleoprotein-based CRISPR/Cas9 in cultivated tomato and obtained mutant plants regenerated from transfected protoplasts with a high mutation rate. The application of genome editing as a research and breeding method has provided many possibilities to improve traits in many crops in recent years. In cultivated tomato (Solanum lycopersicum), so far only stable Agrobacterium-mediated transformation carrying CRISPR/Cas9 reagents has been established. Shoot regeneration from transfected protoplasts is the major bottleneck in the application of DNA-free genome editing via ribonucleoprotein-based CRISPR/Cas9 method in cultivated tomato. In this study, we report the implementation of a transgene-free breeding method for cultivated tomato by CRISPR/Cas9 technology, including the optimization of protoplast isolation and overcoming the obstacle in shoot regeneration from transfected protoplasts. We have identified that the shoot regeneration medium containing 0.1 mg/L IAA and 0.75 mg/L zeatin was the best hormone combination with a regeneration rate of up to 21.3%. We have successfully obtained regenerated plants with a high mutation rate four months after protoplast isolation and transfection. Out of 110 regenerated M0 plants obtained, 35 (31.8%) were mutated targeting both SP and SP5G genes simultaneously and the editing efficiency was up to 60% in at least one allele in either SP or SP5G genes.


Asunto(s)
Edición Génica , Solanum lycopersicum , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Solanum lycopersicum/genética , Fitomejoramiento , Protoplastos , Ribonucleoproteínas/genética
11.
Nucleic Acids Res ; 48(6): 3379-3394, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083668

RESUMEN

Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.


Asunto(s)
ADN/genética , Nicotiana/genética , Siphoviridae/genética , Biología Sintética , Escherichia coli/genética , Integrasas/genética , Cinética , Recombinación Genética/genética , Nicotiana/virología , Proteínas Virales/genética
12.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682842

RESUMEN

Flavour and nutritional quality are important goals for tomato breeders. This study aimed to shed light upon transgressive behaviors for fruit metabolic content. We studied the metabolic contents of 44 volatile organic compounds (VOCs), 18 polyphenolics, together with transcriptome profiles in a factorial design comprising six parental lines and their 14 F1 hybrids (HF1) among which were five pairs of reciprocal HF1. After cluster analyses of the metabolome dataset and co-expression network construction of the transcriptome dataset, we characterized the mode of inheritance of each component. Both overall and per-cross mode of inheritance analyses revealed as many additive and non-additive modes of inheritance with few reciprocal effects. Up to 66% of metabolites displayed transgressions in a HF1 relative to parental values. Analysis of the modes of inheritance of metabolites revealed that: (i) transgressions were mostly of a single type whichever the cross and poorly correlated to the genetic distance between parental lines; (ii) modes of inheritance were scarcely consistent between the 14 crosses but metabolites belonging to the same cluster displayed similar modes of inheritance for a given cross. Integrating metabolome, transcriptome and modes of inheritance analyses suggested a few candidate genes that may drive important changes in fruit VOC contents.


Asunto(s)
Solanum lycopersicum , Compuestos Orgánicos Volátiles , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metaboloma , Transcriptoma , Compuestos Orgánicos Volátiles/metabolismo
13.
BMC Plant Biol ; 21(1): 345, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294034

RESUMEN

BACKGROUND: Due to global warming, the search for new sources for heat tolerance and the identification of genes involved in this process has become an important challenge as of today. The main objective of the current research was to verify whether the heat tolerance determined in controlled greenhouse experiments could be a good predictor of the agronomic performance in field cultivation under climatic high temperature stress. RESULTS: Tomato accessions were grown in greenhouse under three temperature regimes: control (T1), moderate (T2) and extreme heat stress (T3). Reproductive traits (flower and fruit number and fruit set) were used to define heat tolerance. In a first screening, heat tolerance was evaluated in 219 tomato accessions. A total of 51 accessions were identified as being potentially heat tolerant. Among those, 28 accessions, together with 10 accessions from Italy (7) and Bulgaria (3), selected for their heat tolerance in the field in parallel experiments, were re-evaluated at three temperature treatments. Sixteen tomato accessions showed a significant heat tolerance at T3, including five wild species, two traditional cultivars and four commercial varieties, one accession from Bulgaria and four from Italy. The 15 most promising accessions for heat tolerance were assayed in field trials in Italy and Bulgaria, confirming the good performance of most of them at high temperatures. Finally, a differential gene expression analysis in pre-anthesis (ovary) and post-anthesis (developing fruit) under heat stress among pairs of contrasting genotypes (tolerant and sensitive from traditional and modern groups) showed that the major differential responses were produced in post-anthesis fruit. The response of the sensitive genotypes included the induction of HSP genes, whereas the tolerant genotype response included the induction of genes involved in the regulation of hormones or enzymes such as abscisic acid and transferases. CONCLUSIONS: The high temperature tolerance of fifteen tomato accessions observed in controlled greenhouse experiments were confirmed in agronomic field experiments providing new sources of heat tolerance that could be incorporated into breeding programs. A DEG analysis showed the complex response of tomato to heat and deciphered the different mechanisms activated in sensitive and tolerant tomato accessions under heat stress.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/fisiología , Calor , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Termotolerancia/genética , Bulgaria , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Italia , Fenotipo , Fitomejoramiento , España
14.
Plant Biotechnol J ; 17(10): 1971-1984, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30950179

RESUMEN

The CRISPR/Cas12a editing system opens new possibilities for plant genome engineering. To obtain a comparative assessment of RNA-guided endonuclease (RGEN) types in plants, we adapted the CRISPR/Cas12a system to the GoldenBraid (GB) modular cloning platform and compared the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described GB-assembled Streptococcus pyogenes Cas9 (SpCas9) constructs in eight Nicotiana benthamiana loci using transient expression. All three nucleases showed drastic target-dependent differences in efficiency, with LbCas12 producing higher mutagenesis rates in five of the eight loci assayed, as estimated with the T7E1 endonuclease assay. Attempts to engineer crRNA direct repeat (DR) had little effect improving on-target efficiency for AsCas12a and resulted deleterious in the case of LbCas12a. To complete the assessment of Cas12a activity, we carried out genome editing experiments in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, we also resequenced Cas12a-free segregating T2 lines to assess possible off-target effects. Our results showed that the mutagenesis footprint of Cas12a is enriched in deletions of -10 to -2 nucleotides and included in some instances complex rearrangements in the surroundings of the target sites. We found no evidence of off-target mutations neither in related sequences nor somewhere else in the genome. Collectively, this study shows that LbCas12a is a viable alternative to SpCas9 for plant genome engineering.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Arabidopsis/genética , Endonucleasas , Solanum lycopersicum/genética , Mutagénesis , Eliminación de Secuencia , Nicotiana/genética
15.
Nucleic Acids Res ; 45(4): 2196-2209, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28053117

RESUMEN

Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.


Asunto(s)
Biología Computacional/métodos , ADN de Plantas , Plantas/genética , Plantas/metabolismo , Programas Informáticos , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Regiones Promotoras Genéticas , Protoplastos/metabolismo , Transcripción Genética , Interfaz Usuario-Computador , Navegador Web
16.
BMC Plant Biol ; 18(1): 24, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370757

RESUMEN

BACKGROUND: Plants and insects have coexisted for million years and evolved a set of interactions which affect both organisms at different levels. Plants have developed various morphological and biochemical adaptations to cope with herbivores attacks. However, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has become the major pest threatening tomato crops worldwide and without the appropriated management it can cause production losses between 80 to 100%. RESULTS: The aim of this study was to investigate the in vivo effect of a serine proteinase inhibitor (BTI-CMe) and a cysteine proteinase inhibitor (Hv-CPI2) from barley on this insect and to examine the effect their expression has on tomato defensive responses. We found that larvae fed on tomato transgenic plants co-expressing both proteinase inhibitors showed a notable reduction in weight. Moreover, only 56% of these larvae reached the adult stage. The emerged adults showed wings deformities and reduced fertility. We also investigated the effect of proteinase inhibitors ingestion on the insect digestive enzymes. Our results showed a decrease in larval trypsin activity. Transgenes expression had no harmful effect on Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae), a predator of Tuta absoluta, despite transgenic tomato plants attracted the mirid. We also found that barley cystatin expression promoted plant defense by inducing the expression of the tomato endogenous wound inducible Proteinase inhibitor 2 (Pin2) gene, increasing the production of glandular trichomes and altering the emission of volatile organic compounds. CONCLUSION: Our results demonstrate the usefulness of the co-expression of different proteinase inhibitors for the enhancement of plant resistance to Tuta absoluta.


Asunto(s)
Antibiosis/genética , Hordeum/genética , Mariposas Nocturnas/fisiología , Proteínas de Plantas/genética , Inhibidores de Proteasas , Solanum lycopersicum/fisiología , Animales , Inhibidores de Cisteína Proteinasa/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Solanum lycopersicum/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Inhibidores de Proteasas/metabolismo , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo
18.
Plant Biotechnol J ; 16(3): 727-736, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28850773

RESUMEN

Antivenoms developed from the plasma of hyperimmunized animals are the only effective treatment available against snakebite envenomation but shortage of supply contributes to the high morbidity and mortality toll of this tropical disease. We describe a synthetic biology approach to affordable and cost-effective antivenom production based on plant-made recombinant polyclonal antibodies (termed pluribodies). The strategy takes advantage of virus superinfection exclusion to induce the formation of somatic expression mosaics in agroinfiltrated plants, which enables the expression of complex antibody repertoires in a highly reproducible manner. Pluribodies developed using toxin-binding genetic information captured from peripheral blood lymphocytes of hyperimmunized camels recapitulated the overall binding activity of the immune response. Furthermore, an improved plant-made antivenom (plantivenom) was formulated using an in vitro selected pluribody against Bothrops asper snake venom toxins and has been shown to neutralize a wide range of toxin activities and provide protection against lethal venom doses in mice.


Asunto(s)
Planticuerpos/metabolismo , Venenos de Serpiente/antagonistas & inhibidores , Biología Sintética/métodos , Animales , Antivenenos/metabolismo , Bothrops/metabolismo
19.
J Sci Food Agric ; 98(10): 3915-3925, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29369359

RESUMEN

BACKGROUND: Aroma profile and carotenoids content of melon flesh are two important aspects influencing the quality of this fruit that have been characterized using only selected genotypes. However, the extant variability of the whole species remains unknown. RESULTS: A complete view of the volatile/carotenoid profiles of melon flesh was obtained analyzing 71 accessions, representing the whole diversity of the species. Gas chromatography-mass spectrometry and high-performance liquid chromatography were used to analyze 200 volatile compounds and five carotenoids. Genotypes were classified into two main clusters (high/low aroma), but with a large diversity of differential profiles within each cluster, consistent with the ripening behavior, flesh color and proposed evolutionary and breeding history of the different horticultural groups. CONCLUSION: Our results highlight the huge amount of untapped aroma diversity of melon germplasm, especially of non-commercial types. Also, landraces with high nutritional value with regard to carotenoids have been identified. All this knowledge will encourage melon breeding, facilitating the selection of the genetic resources more appropriate to develop cultivars with new aromatic profiles or to minimize the impact of breeding on melon quality. The newly characterized sources provide the basis for further investigations into specific genes/alleles contributing to melon flesh quality. © 2018 Society of Chemical Industry.


Asunto(s)
Carotenoides/química , Cucumis melo/química , Extractos Vegetales/química , Compuestos Orgánicos Volátiles/química , Cruzamiento , Cucumis melo/clasificación , Cucumis melo/genética , Frutas/química , Frutas/clasificación , Frutas/genética , Cromatografía de Gases y Espectrometría de Masas , Genotipo
20.
Plant Physiol ; 171(3): 1821-36, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208285

RESUMEN

The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation.


Asunto(s)
Frutas/fisiología , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Factores de Transcripción/genética , Alelos , Cromatografía Liquida , Flavonoides/biosíntesis , Flavonoides/genética , Flavonoles/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Glicosilación , Solanum lycopersicum/fisiología , Espectrometría de Masas/métodos , Metabolómica/métodos , Mutación , Pigmentación/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA