Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765442

RESUMEN

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animales , Microscopía por Crioelectrón , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Tropomiosina/química , Tropomiosina/metabolismo
2.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687357

RESUMEN

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Asunto(s)
Transporte Activo de Núcleo Celular , Cápside/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Vesículas Transportadoras/ultraestructura , Animales , Cápside/ultraestructura , Chlorocebus aethiops , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Herpesvirus Humano 1/metabolismo , Herpesvirus Suido 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Dispersión del Ángulo Pequeño , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo
3.
Nature ; 623(7988): 863-871, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914933

RESUMEN

The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-ß chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-ß chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.


Asunto(s)
Miosinas Cardíacas , Miocardio , Sarcómeros , Conectina/química , Conectina/metabolismo , Conectina/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Miocardio/química , Miocardio/citología , Miocardio/ultraestructura , Sarcómeros/química , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/ultraestructura
4.
J Struct Biol ; 213(3): 107743, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33971286

RESUMEN

Cryo-electron tomography (cryo-ET) is an emerging technique to study the cellular architecture and the structure of proteins at high resolution in situ. Most biological specimens are too thick to be directly investigated and are therefore thinned by milling with a focused ion beam under cryogenic conditions (cryo-FIB). This procedure is prone to contaminations, which makes it a tedious process, often leading to suboptimal results. Here, we present new hardware that overcomes the current limitations. We developed a new glove box and a high vacuum cryo transfer system and installed a stage heater, a cryo-shield and a cryo-shutter in the FIB milling microscope. This reduces the ice contamination during the transfer and milling process and simplifies the handling of the sample. In addition, we tested a new software application that automates the key milling steps. Together, these improvements allow for high-quality, high-throughput cryo-FIB milling. This paves the way for new types of experiments, which have been previously considered infeasible.


Asunto(s)
Tomografía con Microscopio Electrónico , Programas Informáticos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Flujo de Trabajo
5.
J Struct Biol ; 197(2): 181-190, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27374320

RESUMEN

Electron cryo-tomography (cryoET) is currently the only technique that allows the direct observation of proteins in their native cellular environment. Sub-volume averaging of electron tomograms offers a route to increase the signal-to-noise of repetitive biological structures, such improving the information content and interpretability of tomograms. We discuss the potential for sub-volume averaging in highlighting and investigating specific processes in situ, focusing on microtubule structure and viral infection. We show that (i) in situ sub-volume averaging from single tomograms can guide and complement segmentation of biological features, (ii) the in situ determination of the structure of individual viruses is possible as they infect a cell, and (iii) novel, transient processes can be imaged with high levels of detail.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Microtúbulos/ultraestructura , Citoesqueleto/ultraestructura , Dineínas/ultraestructura , Endocitosis/fisiología
6.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 421-438, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829361

RESUMEN

For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de Fourier , Relación Señal-Ruido
7.
Nat Microbiol ; 9(7): 1842-1855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918469

RESUMEN

The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.


Asunto(s)
Cápside , Núcleo Celular , Microscopía por Crioelectrón , Membrana Nuclear , Liberación del Virus , Núcleo Celular/metabolismo , Núcleo Celular/virología , Humanos , Membrana Nuclear/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Nucleocápside/metabolismo , Tomografía con Microscopio Electrónico , Proteínas Virales/metabolismo , Proteínas Virales/genética , Herpesviridae/fisiología , Herpesviridae/genética
8.
Methods Cell Biol ; 177: 327-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37451772

RESUMEN

Cryogenic volumetric imaging using serial plasma focused ion beam scanning electron microscopy (serial pFIB/SEM) is a new and exciting correlative volume electron microscopy (vEM) technique. It enables visualization of un-stained, cryogenically immobilized cells and tissues with ∼20-50nm resolution and a field of view of ∼10-30µm resulting in near-native state imaging and the possibility of microscale, mesoscale and nanoscale correlative imaging. We have written a detailed protocol for optimization of FIB and SEM parameters to reduce imaging artefacts and enable downstream computational processing and analysis. While our experience is based on use of a single system, the protocol has been written to be as hardware and software agnostic as possible, with a focus on the purpose of each step rather than a fully procedural description to provide a useful resource regardless of the system/software in use.


Asunto(s)
Imagenología Tridimensional , Microscopía Electrónica de Volumen , Microscopía Electrónica de Rastreo , Imagenología Tridimensional/métodos , Programas Informáticos
9.
Nat Commun ; 14(1): 629, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746945

RESUMEN

Structural biology studies inside cells and tissues require methods to thin vitrified specimens to electron transparency. Until now, focused ion beams based on gallium have been used. However, ion implantation, changes to surface chemistry and an inability to access high currents limit gallium application. Here, we show that plasma-coupled ion sources can produce cryogenic lamellae of vitrified human cells in a robust and automated manner, with quality sufficient for pseudo-atomic structure determination. Lamellae were produced in a prototype microscope equipped for long cryogenic run times (> 1 week) and with multi-specimen support fully compatible with modern-day transmission electron microscopes. We demonstrate that plasma ion sources can be used for structural biology within cells, determining a structure in situ to 4.9 Å, and characterise the resolution dependence on particle distance from the lamella edge. We describe a workflow upon which different plasmas can be examined to further streamline lamella fabrication.


Asunto(s)
Electrones , Microscopía , Humanos , Flujo de Trabajo , Carmustina
10.
Biol Imaging ; 3: e10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487693

RESUMEN

Electron cryo-tomography is an imaging technique for probing 3D structures with at the nanometer scale. This technique has been used extensively in the biomedical field to study the complex structures of proteins and other macromolecules. With the advancement in technology, microscopes are currently capable of producing images amounting to terabytes of data per day, posing great challenges for scientists as the speed of processing of the images cannot keep up with the ever-higher throughput of the microscopes. Therefore, automation is an essential and natural pathway on which image processing-from individual micrographs to full tomograms-is developing. In this paper, we present Ot2Rec, an open-source pipelining tool which aims to enable scientists to build their own processing workflows in a flexible and automatic manner. The basic building blocks of Ot2Rec are plugins which follow a unified application programming interface structure, making it simple for scientists to contribute to Ot2Rec by adding features which are not already available. In this paper, we also present three case studies of image processing using Ot2Rec, through which we demonstrate the speedup of using a semi-automatic workflow over a manual one, the possibility of writing and using custom (prototype) plugins, and the flexibility of Ot2Rec which enables the mix-and-match of plugins. We also demonstrate, in the Supplementary Material, a built-in reporting feature in Ot2Rec which aggregates the metadata from all process being run, and output them in the Jupyter Notebook and/or HTML formats for quick review of image processing quality. Ot2Rec can be found at https://github.com/rosalindfranklininstitute/ot2rec.

11.
Biol Imaging ; 3: e9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487692

RESUMEN

An emergent volume electron microscopy technique called cryogenic serial plasma focused ion beam milling scanning electron microscopy (pFIB/SEM) can decipher complex biological structures by building a three-dimensional picture of biological samples at mesoscale resolution. This is achieved by collecting consecutive SEM images after successive rounds of FIB milling that expose a new surface after each milling step. Due to instrumental limitations, some image processing is necessary before 3D visualization and analysis of the data is possible. SEM images are affected by noise, drift, and charging effects, that can make precise 3D reconstruction of biological features difficult. This article presents Okapi-EM, an open-source napari plugin developed to process and analyze cryogenic serial pFIB/SEM images. Okapi-EM enables automated image registration of slices, evaluation of image quality metrics specific to pFIB-SEM imaging, and mitigation of charging artifacts. Implementation of Okapi-EM within the napari framework ensures that the tools are both user- and developer-friendly, through provision of a graphical user interface and access to Python programming.

12.
Elife ; 122023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36805107

RESUMEN

Serial focussed ion beam scanning electron microscopy (FIB/SEM) enables imaging and assessment of subcellular structures on the mesoscale (10 nm to 10 µm). When applied to vitrified samples, serial FIB/SEM is also a means to target specific structures in cells and tissues while maintaining constituents' hydration shells for in situ structural biology downstream. However, the application of serial FIB/SEM imaging of non-stained cryogenic biological samples is limited due to low contrast, curtaining, and charging artefacts. We address these challenges using a cryogenic plasma FIB/SEM. We evaluated the choice of plasma ion source and imaging regimes to produce high-quality SEM images of a range of different biological samples. Using an automated workflow we produced three-dimensional volumes of bacteria, human cells, and tissue, and calculated estimates for their resolution, typically achieving 20-50 nm. Additionally, a tag-free localisation tool for regions of interest is needed to drive the application of in situ structural biology towards tissue. The combination of serial FIB/SEM with plasma-based ion sources promises a framework for targeting specific features in bulk-frozen samples (>100 µm) to produce lamellae for cryogenic electron tomography.


Asunto(s)
Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Humanos , Microscopía Electrónica de Rastreo , Tomografía con Microscopio Electrónico/métodos , Iones , Imagenología Tridimensional/métodos
13.
Science ; 375(6582): eabn1934, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175800

RESUMEN

In skeletal muscle, nebulin stabilizes and regulates the length of thin filaments, but the underlying mechanism remains nebulous. In this work, we used cryo-electron tomography and subtomogram averaging to reveal structures of native nebulin bound to thin filaments within intact sarcomeres. This in situ reconstruction provided high-resolution details of the interaction between nebulin and actin, demonstrating the stabilizing role of nebulin. Myosin bound to the thin filaments exhibited different conformations of the neck domain, highlighting its inherent structural variability in muscle. Unexpectedly, nebulin did not interact with myosin or tropomyosin, but it did interact with a troponin T linker through two potential binding motifs on nebulin, explaining its regulatory role. Our structures support the role of nebulin as a thin filament "molecular ruler" and provide a molecular basis for studying nemaline myopathies.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miofibrillas/ultraestructura , Actinas/química , Actinas/metabolismo , Animales , Tomografía con Microscopio Electrónico , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Proteínas Musculares/genética , Mutación , Miocardio/química , Miocardio/metabolismo , Miocardio/ultraestructura , Miofibrillas/química , Miofibrillas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miosinas/química , Miosinas/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Músculos Psoas/química , Músculos Psoas/metabolismo , Músculos Psoas/ultraestructura , Sarcómeros/química , Sarcómeros/metabolismo , Sarcómeros/ultraestructura
14.
Annu Rev Virol ; 7(1): 239-262, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32631159

RESUMEN

Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Interacciones Microbiota-Huesped , Imagenología Tridimensional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/instrumentación , Replicación Viral , Virus/ultraestructura
15.
Curr Opin Struct Biol ; 46: 149-156, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28915442

RESUMEN

Transmission electron microscopy has a long history in cellular biology. Fixed and stained samples have been used for cellular imaging for over 50 years, but suffer from sample preparation induced artifacts. Electron cryo-tomography (cryoET) instead uses frozen-hydrated samples, without chemical modification, to determine the structure of macromolecular complexes in their native environment. Recent developments in electron microscopes and associated technologies have greatly expanded our ability to visualize cellular features and determine the structures of macromolecular complexes in situ. This review highlights the technological improvements and the new areas of biology these advances have made accessible. We discuss the potential of cryoET to reveal novel and significant biological information on the nanometer or subnanometer scale, and directions for further work.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/química , Animales , Humanos , Integración de Sistemas
16.
Acta Crystallogr D Struct Biol ; 73(Pt 6): 488-495, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28580910

RESUMEN

The recent resolution revolution in cryo-EM has led to a massive increase in demand for both time on high-end cryo-electron microscopes and access to cryo-electron microscopy expertise. In anticipation of this demand, eBIC was set up at Diamond Light Source in collaboration with Birkbeck College London and the University of Oxford, and funded by the Wellcome Trust, the UK Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) to provide access to high-end equipment through peer review. eBIC is currently in its start-up phase and began by offering time on a single FEI Titan Krios microscope equipped with the latest generation of direct electron detectors from two manufacturers. Here, the current status and modes of access for potential users of eBIC are outlined. In the first year of operation, 222 d of microscope time were delivered to external research groups, with 95 visits in total, of which 53 were from unique groups. The data collected have generated multiple high- to intermediate-resolution structures (2.8-8 Å), ten of which have been published. A second Krios microscope is now in operation, with two more due to come online in 2017. In the next phase of growth of eBIC, in addition to more microscope time, new data-collection strategies and sample-preparation techniques will be made available to external user groups. Finally, all raw data are archived, and a metadata catalogue and automated pipelines for data analysis are being developed.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Animales , Humanos , Imagenología Tridimensional/métodos , Investigación , Manejo de Especímenes , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA