Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell Biol ; 27(20): 7102-12, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17709387

RESUMEN

Protein tyrosine phosphatases (PTPs) are key mediators that link physiological cues with reversible changes in protein structure and function; nevertheless, significant details concerning their regulation in vivo remain unknown. We demonstrate that PTPepsilon associates with microtubules in vivo and is inhibited by them in a noncompetitive manner. Microtubule-associated proteins, which interact strongly with microtubules in vivo, significantly increase binding of PTPepsilon to tubulin in vitro and further reduce phosphatase activity. Conversely, disruption of microtubule structures in cells reduces their association with PTPepsilon, alters the subcellular localization of the phosphatase, and increases its specific activity. Activation of the epidermal growth factor receptor (EGFR) increases the PTPepsilon-microtubule association in a manner dependent upon EGFR-induced phosphorylation of PTPepsilon at Y638 and upon microtubule integrity. These events are transient and occur with rapid kinetics similar to EGFR autophosphorylation, suggesting that activation of the EGFR transiently down-regulates PTPepsilon activity near the receptor by promoting the PTPepsilon-microtubule association. Tubulin also inhibits the tyrosine phosphatase PTP1B but not receptor-type PTPmu or the unrelated alkaline phosphatase. The data suggest that reversible association with microtubules is a novel, physiologically regulated mechanism for regulation of tyrosine phosphatase activity in cells.


Asunto(s)
Receptores ErbB/metabolismo , Isoenzimas/metabolismo , Microtúbulos/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Receptores ErbB/genética , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Ratones , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Tubulina (Proteína)/metabolismo
2.
Eur J Cell Biol ; 87(8-9): 479-90, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18342392

RESUMEN

Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage. Their primary function is to degrade bone in various physiological contexts. Osteoclasts adhere to bone via podosomes, specialized adhesion structures whose structure and subcellular organization are affected by mechanical contact of the cell with bone matrix. Ample evidence indicates that reversible tyrosine phosphorylation of podosomal proteins plays a major role in determining the organization and dynamics of podosomes. Although roles of several tyrosine kinases are known in detail in this respect, little is known concerning the roles of protein tyrosine phosphatases (PTPs) in regulating osteoclast adhesion. Here we summarize available information concerning the known and hypothesized roles of the best-researched PTPs in osteoclasts - PTPRO, PTP epsilon, SHP-1, and PTP-PEST. Of these, PTPRO, PTP epsilon, and PTP-PEST appear to support osteoclast activity while SHP-1 inhibits it. Additional studies are required to provide full molecular details of the roles of these PTPs in regulating osteoclast adhesion, and to uncover additional PTPs that participate in this process.


Asunto(s)
Resorción Ósea/enzimología , Osteoclastos/citología , Osteoclastos/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Adhesión Celular/fisiología , Diferenciación Celular , Humanos , Modelos Biológicos , Osteoclastos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo
3.
Crit Rev Eukaryot Gene Expr ; 17(1): 49-71, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17341183

RESUMEN

Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage, whose primary function is to degrade bone in various physiological contexts. Reversible phosphorylation of tyrosine residues in proteins is known to play significant roles in regulating the function of osteoclasts, much as it does in other cell types. Protein tyrosine phosphatases (PTPs) are among the major regulators of this process, but significant gaps exist in our knowledge of which phosphatases function in osteoclasts and the nature of their precise cellular and molecular roles. We review here the roles of the four tyrosine phosphatases that are known currently to be expressed in osteoclasts--PTPRO, PTP epsilon (PTPepsilon), SHP-1, and PTP-PEST. Of these, PTPRO and PTPepsilon support osteoclast activity, whereas SHP-1 inhibits it. Much future research is required to uncover additional PTPs that function in osteoclasts and provide full molecular-level accounting of their respective roles in osteoclasts.


Asunto(s)
Resorción Ósea/enzimología , Osteoclastos/enzimología , Proteínas Tirosina Fosfatasas/fisiología , Animales , Resorción Ósea/genética , Huesos/enzimología , Huesos/ultraestructura , Fosforilación , Proteínas Tirosina Fosfatasas/genética
4.
Mol Cell Biol ; 23(15): 5460-71, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12861030

RESUMEN

cyt-PTP epsilon is a naturally occurring nonreceptor form of the receptor-type protein tyrosine phosphatase (PTP) epsilon. As such, cyt-PTP epsilon enables analysis of phosphatase regulation in the absence of extracellular domains, which participate in dimerization and inactivation of the receptor-type phosphatases receptor-type protein tyrosine phosphatase alpha (RPTPalpha) and CD45. Using immunoprecipitation and gel filtration, we show that cyt-PTP epsilon forms dimers and higher-order associations in vivo, the first such demonstration among nonreceptor phosphatases. Although cyt-PTP epsilon readily dimerizes in the absence of exogenous stabilization, dimerization is increased by oxidative stress. Epidermal growth factor receptor stimulation can affect cyt-PTP epsilon dimerization and tyrosine phosphorylation in either direction, suggesting that cell surface receptors can relay extracellular signals to cyt-PTP epsilon, which lacks extracellular domains of its own. The inactive, membrane-distal (D2) phosphatase domain of cyt-PTP epsilon is a major contributor to intermolecular binding and strongly interacts in a homotypic manner; the presence of D2 and the interactions that it mediates inhibit cyt-PTP epsilon activity. Intermolecular binding is inhibited by the extreme C and N termini of D2. cyt-PTP epsilon lacking these regions constitutively dimerizes, and its activities in vitro towards para-nitrophenylphosphate and in vivo towards the Kv2.1 potassium channel are markedly reduced. We conclude that physiological signals can regulate dimerization and phosphorylation of cyt-PTP epsilon in the absence of direct interaction between the PTP and extracellular molecules. Furthermore, dimerization can be mediated by the D2 domain and does not strictly require the presence of PTP extracellular domains.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/fisiología , Células 3T3 , Animales , Línea Celular , Membrana Celular/metabolismo , Cromatografía en Gel , ADN Complementario/metabolismo , Canales de Potasio de Tipo Rectificador Tardío , Dimerización , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Modelos Biológicos , Fosforilación , Canales de Potasio/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores , Canales de Potasio Shab , Transducción de Señal , Temperatura , Factores de Tiempo , Transfección , Tirosina/metabolismo
5.
Mol Biol Cell ; 15(1): 234-44, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14528021

RESUMEN

Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPepsilon) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPepsilon-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPepsilon adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPepsilon-deficient osteoclasts, indicating that loss of PTPepsilon does not cause widespread disruption of these signaling pathways. These results establish PTPepsilon as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.


Asunto(s)
Diferenciación Celular/fisiología , Osteoblastos/enzimología , Osteoclastos/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Huesos/citología , Huesos/enzimología , Proteínas Portadoras/metabolismo , Polaridad Celular/fisiología , Células Cultivadas , Colágeno/metabolismo , Activación Enzimática/fisiología , Estrógenos/sangre , Estrógenos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Osteoblastos/citología , Osteoclastos/citología , Fosforilación , Progesterona/sangre , Progesterona/metabolismo , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores , Transducción de Señal , Familia-src Quinasas/metabolismo
6.
Mol Cancer Res ; 1(7): 541-50, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12754301

RESUMEN

Mitogen-activated protein kinases (MAPKs) mediate signaling from the cell membrane to the nucleus following their phosphorylation at conserved threonine and tyrosine residues within their activation loops. We show that protein tyrosine phosphatase epsilon (PTP epsilon) inhibits ERK1 and ERK2 kinase activity and reduces their phosphorylation; in agreement, ERK phosphorylation is increased in fibroblasts and in mammary tumor cells from mice genetically lacking PTP epsilon. PTP epsilon inhibits events downstream of ERKs, such as transcriptional activation mediated by Elk1 or by the serum response element. PTP epsilon also inhibits transcriptional activation mediated by c-Jun and C/EBP binding protein (CHOP) but not that mediated by the unrelated NFkB, attesting that it is broadly active within the MAPK family but otherwise specific. The effect of PTP epsilon on ERKs is at least in part indirect because phosphorylation of the threonine residue in the ERK activation loop is reduced in the presence of PTP epsilon. Nonetheless, PTP epsilon is present in a molecular complex with ERK, providing PTP epsilon with opportunity to act on ERK proteins also directly. We conclude that PTP epsilon is a physiological inhibitor of ERK signaling. Slow induction of PTP epsilon and its lack of nuclear translocation following mitogenic stimulation suggest that PTP epsilon functions to prevent inappropriate activation and to terminate prolonged, rather than acute, activation of ERK in the cytosol.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/fisiología , Células 3T3 , Animales , Línea Celular , Clonación Molecular , Humanos , Ratones , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Recombinantes/metabolismo , Transfección
7.
Mol Biol Cell ; 20(20): 4324-34, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692574

RESUMEN

The nonreceptor isoform of tyrosine phosphatase epsilon (cyt-PTPe) supports osteoclast adhesion and activity in vivo, leading to increased bone mass in female mice lacking PTPe (EKO mice). The structure and organization of the podosomal adhesion structures of EKO osteoclasts are abnormal; the molecular mechanism behind this is unknown. We show here that EKO podosomes are disorganized, unusually stable, and reorganize poorly in response to physical contact. Phosphorylation and activities of Src, Pyk2, and Rac are decreased and Rho activity is increased in EKO osteoclasts, suggesting that integrin signaling is defective in these cells. Integrin activation regulates cyt-PTPe by inducing Src-dependent phosphorylation of cyt-PTPe at Y638. This phosphorylation event is crucial because wild-type-but not Y638F-cyt-PTPe binds and further activates Src and restores normal stability to podosomes in EKO osteoclasts. Increasing Src activity or inhibiting Rho or its downstream effector Rho kinase in EKO osteoclasts rescues their podosomal stability phenotype, indicating that cyt-PTPe affects podosome stability by functioning upstream of these molecules. We conclude that cyt-PTPe participates in a feedback loop that ensures proper Src activation downstream of integrins, thus linking integrin signaling with Src activation and accurate organization and stability of podosomes in osteoclasts.


Asunto(s)
Adhesión Celular/fisiología , Extensiones de la Superficie Celular/fisiología , Integrinas/fisiología , Osteoclastos/ultraestructura , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/fisiología , Transducción de Señal/fisiología , Animales , Extensiones de la Superficie Celular/ultraestructura , Citoplasma/enzimología , Activación Enzimática , Retroalimentación Fisiológica , Femenino , Quinasa 2 de Adhesión Focal/fisiología , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Neuropéptidos/fisiología , Osteoclastos/enzimología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Proteínas Recombinantes de Fusión/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteína de Unión al GTP rac1 , Proteínas de Unión al GTP rho/fisiología , Quinasas Asociadas a rho/fisiología , Proteína de Unión al GTP rhoA , Familia-src Quinasas/fisiología
8.
Cancer Metastasis Rev ; 27(2): 193-203, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18231724

RESUMEN

Aberrant regulation of the phosphorylation of proteins on tyrosine residues is a well-established cause of cancer. Protein tyrosine phosphatases (PTPs) share in the crucial function of maintaining appropriate levels of phosphorylation of cellular proteins, making them potentially key players in regulating the transformation process. The receptor-type tyrosine phosphatase Epsilon (RPTPepsilon) participates in supporting the transformed phenotype of mammary tumor cells induced in vivo by the Neu tyrosine kinase. The phosphatase is overexpressed in mammary tumors induced in mice by a Neu transgene and expression of RPTPepsilon in mouse mammary glands leads to massive hyperplasia and associated tumorigenesis. Furthermore, cells isolated from mammary tumors induced by Neu in mice genetically lacking RPTPepsilon appear less transformed and proliferate less well than corresponding mammary tumor cells isolated from mice expressing the phosphatase. At the molecular level, RPTPepsilon dephosphorylates and activates Src and the related kinases Yes and Fyn, and the activities of these kinases are significantly reduced in tumor cells lacking RPTPepsilon. Restoring the activities of these kinases reveals that it is only the reduced activity of Src that causes the aberrant morphology and proliferation rate of tumor cells lacking RPTPepsilon. RPTPepsilon is primed to activate Src, and presumably related kinases, following its phosphorylation by Neu at Y695 within its C-terminus. This event is crucial in enabling RPTPepsilon to activate Src, but appears not to affect the activity of RPTPepsilon towards unrelated substrates. We conclude that a Neu-RPTPepsilon-Src pathway exists in mouse mammary tumor cells, in which Neu phosphorylates RPTPepsilon thereby driving the phosphatase to specifically activate Src family kinases and to assist in maintaining the transformed phenotype.


Asunto(s)
Transformación Celular Neoplásica , Neoplasias Mamarias Experimentales/enzimología , Receptor ErbB-2/metabolismo , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/fisiología , Transducción de Señal/fisiología , Animales , Femenino , Humanos , Ratones
9.
Exp Cell Res ; 294(1): 236-43, 2004 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-14980517

RESUMEN

The receptor-type form of protein tyrosine phosphatase epsilon (RPTP) is among the few tyrosine phosphatases that can support the transformed phenotype of tumor cells. Accordingly, cells from mammary epithelial tumors induced by activated Neu in mice genetically lacking RPTP appear morphologically less transformed and exhibit reduced proliferation. The effect of RPTP in these cells is mediated at least in part by its ability to activate Src, the prototypic member of a family of related kinases. We show here that RPTP is a physiological activator of two additional Src family kinases, Yes and Fyn. Activities of both kinases are inhibited in mammary tumor cells lacking RPTP, and phosphorylation at their C-terminal inhibitory tyrosines is increased. In agreement, opposite effects on activities and phosphorylation of Yes and Fyn are observed following increased expression of PTP. RPTP also forms stable complexes with either kinase, providing physical opportunity for their activation by RPTP. Surprisingly, expression of Yes or of Fyn does not rescue the morphological phenotype of RPTP-deficient tumor cells in contrast with the strong ability of Src to do so. We conclude that RPTP activates Src, Yes, and Fyn, but that these related kinases play distinct roles in Neu-induced mammary tumor cells.


Asunto(s)
Neoplasias Mamarias Animales/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Familia-src Quinasas , Animales , Activación Enzimática , Femenino , Genes erbB-2 , Neoplasias Mamarias Animales/etiología , Neoplasias Mamarias Animales/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas c-fyn , Proteínas Proto-Oncogénicas c-yes , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA