Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(9): 091601, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489631

RESUMEN

Is string theory uniquely determined by self-consistency? Causality and unitarity seemingly permit a multitude of putative deformations, at least at the level of two-to-two scattering. Motivated by this question, we initiate a systematic exploration of the constraints on scattering from higher-point factorization, which imposes extraordinarily restrictive sum rules on the residues and spectra defined by a given amplitude. These bounds handily exclude several proposed deformations of the string: the simplest "bespoke" amplitudes with tunable masses and a family of modified string integrands from "binary geometry." While the string itself passes all tests, our formalism directly extracts the three-point amplitudes for the low-lying string modes without the aid of worldsheet vertex operators.

2.
Can J Physiol Pharmacol ; 102(2): 75-85, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37748198

RESUMEN

The decision to use the optimal animal model to mimic the various types of cardiovascular disease is a critical one for a basic scientist. Clinical cardiovascular disease can be complex and presents itself as atherosclerosis, hypertension, ischemia/reperfusion injury, myocardial infarcts, and cardiomyopathies, amongst others. This may be further complicated by the simultaneous presence of two or more cardiovascular lesions (for example, atherosclerosis and hypertension) and co-morbidities (i.e., diabetes, infectious disease, obesity, etc). This variety and merging of disease states creates an unusually difficult situation for the researcher who needs to identify the optimal animal model that is available to best represent all of the characteristics of the clinical cardiovascular disease. The present manuscript reviews the characteristics of the various animal models of cardiovascular disease available today, their advantages and disadvantages, with the goal to allow the reader access to the most recent data available for optimal choices prior to the initiation of the study. The animal species that can be chosen, the methods of generating these models of cardiovascular disease, as well as the specific cardiovascular lesions involved in each of these models are reviewed. A particular focus on the JCR:LA-cp rat as a model of cardiovascular disease is discussed.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hipertensión , Ratas , Animales , Obesidad/complicaciones , Aterosclerosis/patología , Modelos Animales de Enfermedad
3.
Dev Biol ; 483: 66-75, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968443

RESUMEN

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , MicroARNs/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Hibridación in Situ/métodos , Morfolinos/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Neurulación/genética , Fenotipo , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
4.
Rev Cardiovasc Med ; 24(5): 149, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076734

RESUMEN

The inclusion of flaxseed in the diet may have a great number of potential benefits for the well-being of both healthy individuals and those challenged by disease conditions as well. With an increase in the number and quality of studies focused on the physiological and pathophysiological effects of dietary flaxseed, our knowledge concerning the rationale for the inclusion of flaxseed in our diet has become more convincing and stronger. The purpose of this review is threefold. First, the review will comprehensively document the evidence supporting the value of dietary flaxseed to improve bodily health in both normal and disease conditions. Second, this review will identify the mechanisms of action responsible for these effects. Finally, this article will review practical aspects relevant to the inclusion of flaxseed in the diet. Briefly, supplementing the diet with flaxseed has beneficial effects on the treatment and/or prevention of different kinds of cardiovascular disease (hypertension, ischemic heart disease, myocardial infarcts, atherosclerosis), non-alcoholic fatty liver disease, breast cancer, bone strength, menopause, diabetes, and wound healing. Although some controversy exists on the component within flaxseed that provides these beneficial actions, it is likely that the rich content of the omega-3 fatty acid, alpha linolenic acid, is primarily responsible for the majority of these biological effects. It is concluded that the constantly expanding evidence in support of the inclusion of flaxseed in our daily diet to provide significant health benefits strongly encourages the initiation of additional work on dietary flaxseed in order to both confirm past findings as well as to further advance our knowledge regarding the important biological actions of dietary flaxseed.

5.
Phys Rev Lett ; 131(9): 091402, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721835

RESUMEN

We show that extremal Kerr black holes are sensitive probes of new physics. Stringy or quantum corrections to general relativity are expected to generate higher-curvature terms in the gravitational action. We show that in the presence of these terms, asymptotically flat extremal rotating black holes have curvature singularities on their horizon. Furthermore, near-extremal black holes can have large yet finite tidal forces for infalling observers. In addition, we consider five-dimensional extremal charged black holes and show that higher-curvature terms can have a large effect on the horizon geometry.

6.
J Org Chem ; 88(6): 3998-4002, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36848377

RESUMEN

4-Picoline derivatives are converted to the corresponding aryl picolyl sulfones upon treatment with aryl sulfonyl chlorides and Et3N in the presence of catalytic DMAP. The reaction proceeds smoothly for a variety of alkyl and aryl picolines using a range of aryl sulfonyl chlorides. The reaction is believed to involve N-sulfonyl 4-alkylidene dihydropyridine intermediates and results in formal sulfonylation of unactivated picolyl C-H bonds.

7.
Tetrahedron Lett ; 1282023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37841749

RESUMEN

A method to introduce allyl or cinnamyl groups to the picolyl positions of 2- or 4-alkylpyridines is described. Substituted N-allyl pyridinium salts are first treated with base (KOtBu) followed by catalytic [(η3-allyl)PdCl]2 and PPh3 to result in formal Pd-catalyzed transfer of N-allyl groups to the pyridine periphery. The reaction is believed to proceed through initial formation of nucleophilic alkylidene dihydropyridine intermediates that react with (π-allyl)Pd(II) electrophiles, thereby regenerating N-allyl pyridinium cations. Catalytic turnover and liberation of pyridine products is then achieved by oxidative addition of Pd(0) to these activated allyl groups.

8.
Vet Pathol ; 60(5): 628-639, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37439539

RESUMEN

Freshwater mussels are one of the most endangered groups of animals in Indiana, with nearly half of the native species either extirpated or listed as "state endangered" or of "special concern." Nationally, numerous freshwater mussel species are considered threatened. Freshwater mussel diseases are not well understood and few published accounts of freshwater mussel diseases with detailed histological descriptions exist. Mass mortality events within mussel populations are increasingly recognized, often with undetermined etiology. Our objective was to determine baseline histopathology in free-living populations of freshwater mussels. One-hundred twenty individual mussels representing 2 species-plain pocketbook (Lampsilis cardium) and fatmucket (Lampsilis siliquoidea)-were collected from 3 different locations within the Wildcat Creek watershed in central Indiana during June and July 2019. A cross-section through the visceral mass was obtained and immersed in 10% neutral-buffered formalin, with routine processing and hematoxylin and eosin staining. Branchial acariasis occurred in 43/60 fatmuckets and 22/60 plain pocketbooks. Infection with a bucephalid trematode was recognized in 18/60 fatmuckets, while infection of the gonadal duct with an unidentified trematode species was identified in 4/60 fatmuckets and 18/59 plain pocketbooks. Additional changes associated with unidentified trematodes, bacteria, fungi or oomycetes, and ciliates were observed. Other miscellaneous changes included mineralization, neuronal lipofuscinosis, and gonadal atrophy/atresia. A range of histological changes were observed. These changes likely represented background lesions: incidental findings, spontaneous infectious or endosymbiotic conditions, or normal physiological changes that routinely occur in free-living wild populations. Awareness of baseline lesions should inform future diagnostic investigations of mussel mortality events.


Asunto(s)
Bivalvos , Unionidae , Contaminantes Químicos del Agua , Animales , Indiana/epidemiología , Agua Dulce
9.
Biochem Soc Trans ; 50(2): 965-974, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35383827

RESUMEN

The neural crest (NC) is a vertebrate-specific migratory population of multipotent stem cells that originate during late gastrulation in the region between the neural and non-neural ectoderm. This population of cells give rise to a range of derivatives, such as melanocytes, neurons, chondrocytes, chromaffin cells, and osteoblasts. Because of this, failure of NC development can cause a variety of pathologies, often syndromic, that are globally called neurocristopathies. Many genes are known to be involved in NC development, but not all of them have been identified. In recent years, attention has moved from protein-coding genes to non-coding genes, such as microRNAs (miRNA). There is increasing evidence that these non-coding RNAs are playing roles during embryogenesis by regulating the expression of protein-coding genes. In this review, we give an introduction to miRNAs in general and then focus on some miRNAs that may be involved in NC development and neurocristopathies. This new direction of research will give geneticists, clinicians, and molecular biologists more tools to help patients affected by neurocristopathies, as well as broadening our understanding of NC biology.


Asunto(s)
MicroARNs , Cresta Neural , Diferenciación Celular/genética , Desarrollo Embrionario , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Cresta Neural/metabolismo , Cresta Neural/patología , Neurogénesis , Osteoblastos
10.
Rev Cardiovasc Med ; 23(8): 284, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39076631

RESUMEN

The mammalian Na + /H + exchanger (NHE) is a family of ubiquitous membrane proteins present in humans. Isoform one (NHE1) is present on the plasma membrane and regulates intracellular pH by removal of one intracellular proton in exchange for one extracellular sodium thus functioning as an electroneutral process. Human NHE1 has a 500 amino acid membrane domain plus a C-terminal 315 amino acid, regulatory cytosolic tail. It is regulated through a cytosolic regulatory C-terminal tail which is subject to phosphorylation and is modulated by proteins and lipids. Substantial evidence has implicated NHE1 activity in both myocardial ischemia and reperfusion damage and myocardial remodeling resulting in heart failure. Experimental data show excellent cardioprotection with NHE1 inhibitors although results from clinical results have been mixed. In cardiac surgery patients receiving the NHE1 inhibitor cariporide, subgroups showed beneficial effects of treatment. However, in one trial this was associated with a significantly increased incidence of ischemic strokes. This likely reflected both inappropriate dosing regimens as well as overly high drug doses. We suggest that further progress towards NHE1 inhibition as a treatment for cardiovascular disease is warranted through the development of novel compounds to inhibit NHE1 that are structurally different than those previously used in compromised clinical trials. Some novel pyrazinoyl guanidine inhibitors of NHE1 are already in development and the recent elucidation of the three-dimensional structure of the NHE1 protein and identity of the inhibitor binding site may facilitate development. An alternative approach may also be to control the endogenous regulation of activity of NHE1, which is activated in disease.

11.
Rev Cardiovasc Med ; 23(1): 15, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35092207

RESUMEN

Invasive cardiovascular procedures which include heart transplantations, congenital heart surgery, coronary artery bypass grafts, cardiac valve repair and replacement, and interventional cardiac electrophysiology procedures represent common mechanisms to treat a variety of cardiovascular diseases across the globe. The majority of these invasive approaches employ antibiotics as a regular and obligatory feature of the invasive procedure. Although the growing incidence of bacterial resistance to currently used antibiotics threatens to curtail the use of all interventional surgical techniques, it remains an underappreciated threat within the arsenal of cardiovascular therapies. It is reasonable to expect that the continued overuse of antibiotics and the frequent management of coronavirus disease 2019 (COVID-19) infected patients with high doses of antibiotics will inevitably accentuate the rise of multidrug resistance. The purpose of this article is to heighten awareness of the role of bacterial infections in cardiovascular disease, the use of antibiotics in today's cardiovascular surgical theaters, the threat facing cardiovascular surgery should multidrug resistance continue to rise unabated, and the development of new antibiotic platforms to solve this problem.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Bacterias , Resistencia a Múltiples Medicamentos , Humanos , SARS-CoV-2
12.
Mol Cell Biochem ; 477(1): 153-165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34626300

RESUMEN

The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the major Na+ pump in aerobic pathogens such as Vibrio cholerae. The interface between two of the NQR subunits, NqrB and NqrD, has been proposed to harbor a binding site for inhibitors of Na+-NQR. While the mechanisms underlying Na+-NQR function and inhibition remain underinvestigated, their clarification would facilitate the design of compounds suitable for clinical use against pathogens containing Na+-NQR. An in silico model of the NqrB-D interface suitable for use in molecular dynamics simulations was successfully constructed. A combination of algorithmic and manual methods was used to reconstruct portions of the two subunits unresolved in the published crystal structure and validate the resulting structure. Hardware and software optimizations that improved the efficiency of the simulation were considered and tested. The geometry of the reconstructed complex compared favorably to the published V. cholerae Na+-NQR crystal structure. Results from one 1 µs, three 150 ns and two 50 ns molecular dynamics simulations illustrated the stability of the system and defined the limitations of this model. When placed in a lipid bilayer under periodic boundary conditions, the reconstructed complex was completely stable for at least 1 µs. However, the NqrB-D interface underwent a non-physiological transition after 350 ns.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Complejos Multienzimáticos/química , NAD(P)H Deshidrogenasa (Quinona)/química , Vibrio cholerae/enzimología , Proteínas Bacterianas/genética , Complejos Multienzimáticos/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Vibrio cholerae/genética
13.
Am J Physiol Heart Circ Physiol ; 320(3): H1170-H1184, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513080

RESUMEN

Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury. Adult rat ventricular cardiomyocytes were treated with increasing concentrations of various purified fragmented OxPCs. Cardiomyocyte viability, bioenergetic response, and calcium transients were determined in the presence of OxPCs. Five different fragmented OxPCs resulted in a decrease in cell viability, with 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC) having the most potent cardiotoxic effect in both a concentration and time dependent manner (P < 0.05). POVPC and PONPC also caused a significant decrease in Ca2+ transients and net contraction in isolated cardiomyocytes compared to vehicle treated control cells (P < 0.05). PONPC depressed maximal respiration rate (P < 0.01; 54%) and spare respiratory capacity (P < 0.01; 54.5%). Notably, neither caspase 3 activation or TUNEL staining was observed in cells treated with either POVPC or PONPC. Further, cardiac myocytes treated with OxPCs were indistinguishable from vehicle-treated control cells with respect to nuclear high-mobility group box protein 1 (HMGBP1) activity. However, glutathione peroxidase 4 activity was markedly suppressed in cardiomyocytes treated with POVPC and PONPC coincident with increased ferroptosis. Importantly, cell death induced by OxPCs could be suppressed by E06 Ab, directed against OxPCs or by ferrostatin-1, which bound the sn-2 aldehyde of POVPC during I/R. The findings of the present study demonstrate that oxidation of phosphatidylcholines during I/R generate bioactive phospholipid intermediates that disrupt mitochondrial bioenergetics and calcium transients and provoke wide spread cell death through ferroptosis. Neutralization of OxPC with E06 or with ferrostatin-1 prevents cell death during reperfusion. Our study demonstrates a novel signaling pathway that operationally links generation of OxPC during cardiac I/R to ferroptosis. Interventions designed to target OxPCs may prove beneficial in mitigating ferroptosis during I/R injury in individuals with ischemic heart disease.NEW & NOTEWORTHY Oxidized phosphatidylcholines (OxPC) generated during reperfusion injury are potent inducers of cardiomyocyte death. Our studies have shown that OxPCs exert this effect through a ferroptotic process that can be attenuated. A better understanding of the OxPC cell death pathway can prove a novel strategy for prevention of cell death during myocardial reperfusion injury.


Asunto(s)
Ferroptosis/efectos de los fármacos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Fosfatidilcolinas/toxicidad , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxidación-Reducción , Éteres Fosfolípidos/toxicidad , Ratas Sprague-Dawley
14.
Phys Rev Lett ; 127(24): 241602, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34951795

RESUMEN

Physical properties of scattering amplitudes are mapped to the Riemann zeta function. Specifically, a closed-form amplitude is constructed, describing the tree-level exchange of a tower with masses m_{n}^{2}=µ_{n}^{2}, where ζ(1/2±iµ_{n})=0. Requiring real masses corresponds to the Riemann hypothesis, locality of the amplitude to meromorphicity of the zeta function, and universal coupling between massive and massless states to simplicity of the zeros of ζ. Unitarity bounds from dispersion relations for the forward amplitude translate to positivity of the odd moments of the sequence of 1/µ_{n}^{2}.

15.
Phys Rev Lett ; 127(14): 149901, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652213

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.125.081601.

16.
J Org Chem ; 86(18): 13134-13142, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34464531

RESUMEN

An experimentally simple one-pot preparation of N-alkenyl-2-pyridones is reported. The reaction features mild conditions using readily available 2-halopyridinium salts and aldehydes. N-Alkenyl-2-pyridone formation proceeds with high diastereoselectivity, and a wide range of aldehyde reaction partners is tolerated. Pyridone products are also amenable to further manipulation, including conversion to N-alkyl pyridones and polycyclic ring systems.

17.
Can J Physiol Pharmacol ; 99(2): 125-128, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32755491

RESUMEN

One of the primary purposes of the studies that life science researchers carry out is to translate their findings into demonstrable impacts in the lives of the general population. If we study the mechanism of heart disease, for example, it is our hope that new therapies or preventative strategies can be created from these mechanistic data. In the field of nutrition, it is the ultimate goal to translate research findings on the health benefits of functional foods and nutraceuticals into products consumed by the public that will benefit their health, improve quality of life, prevent disease, and prolong life. However, the pathway from research on the health benefits of specific foods or food products into industry applications is often a pathway with multiple, unexpected roadblocks for the unsuspecting scientist. The purpose of this article, therefore, is to identify these obstacles that have confronted industry translation in the past by using flaxseed research as an example. The ultimate goal of the review is to alert those in research and in the food industry of these translational hindrances to avoid them in the future and promote a more rapid and effective translation of food/health research into marketing success.


Asunto(s)
Lino , Industria de Alimentos , Investigación , Suplementos Dietéticos , Calidad de Vida
18.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066757

RESUMEN

Despite advances in diagnostic, prognostic, and treatment modalities, myocardial infarction (MI) remains a leading cause of morbidity and mortality. Impaired cellular signaling after an MI causes maladaptive changes resulting in cardiac remodeling. MicroRNAs (miRNAs/miR) along with other molecular components have been investigated for their involvement in cellular signaling in the pathogenesis of various cardiac conditions like MI. miRNAs are small non-coding RNAs that negatively regulate gene expression. They bind to complementary mRNAs and regulate the rate of protein synthesis by altering the stability of their targeted mRNAs. A single miRNA can modulate several cellular signaling pathways by targeting hundreds of mRNAs. This review focuses on the biogenesis and beneficial effects of cellular and circulating (exosomal) miRNAs on cardiac remodeling after an MI. Particularly, miR-1, -133, 135, and -29 that play an essential role in cardiac remodeling after an MI are described in detail. The limitations that will need to be addressed in the future for the further development of miRNA-based therapeutics for cardiovascular conditions will also be discussed.


Asunto(s)
MicroARN Circulante/sangre , MicroARN Circulante/genética , Infarto del Miocardio/sangre , Infarto del Miocardio/fisiopatología , Remodelación Ventricular , Animales , Biomarcadores/sangre , MicroARN Circulante/uso terapéutico , Humanos , Modelos Biológicos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Estabilidad del ARN/genética
19.
Phys Rev Lett ; 125(8): 081601, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909788

RESUMEN

We use unitarity and analyticity of scattering amplitudes to constrain fermionic operators in the standard model effective field theory. For four-fermion operators at mass dimension 8, we scatter flavor superpositions in fixed standard model representations and find the Wilson coefficients to be constrained so that their contraction with any pair of pure density matrices is positive. These constraints imply that flavor-violating couplings are upper bounded by their flavor-conserving cousins. For instance, LEP data already appears to preclude certain operators in upcoming µâ†’3e measurements.

20.
J Nutr ; 150(9): 2353-2363, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510147

RESUMEN

BACKGROUND: Although the combination of doxorubicin (DOX) and trastuzumab (TRZ) reduces the progression and recurrence of breast cancer, these anticancer drugs are associated with significant cardiotoxic side effects. OBJECTIVE: We investigated whether prophylactic administration of flaxseed (FLX) and its bioactive components, α-linolenic acid (ALA) and secoisolariciresinol diglucoside (SDG), would be cardioprotective against DOX + TRZ-mediated cardiotoxicity in a chronic in vivo female murine model. METHODS: Wild-type C57BL/6 female mice (10-12 wk old) received daily prophylactic treatment with one of the following diets: 1) regular control (RC) semi-purified diet; 2) 10% FLX diet; 3) 4.4% ALA diet; or 4) 0.44% SDG diet for a total of 6 wks. Within each arm, mice received 3 weekly injections of 0.9% saline or a combination of DOX [8 mg/(kg.wk)] and TRZ [3 mg/(kg.wk)] starting at the end of week 3. The main outcome was to evaluate the effects of FLX, ALA, and SDG on cardiovascular remodeling and markers of apoptosis, inflammation, and mitochondrial dysfunction. Significance between measurements was determined using a 4 (diet) × 2 (chemotherapy) × 2 (time) mixed factorial design with repeated measures. RESULTS: In the RC + DOX + TRZ-treated mice at week 6 of the study, the left ventricular ejection fraction (LVEF) decreased by 50% compared with the baseline LVEF (P < 0.05). However, the prophylactic administration of the FLX, ALA, or SDG diet was partially cardioprotective, with mice in these treatment groups showing an ∼68% increase in LVEF compared with the RC + DOX + TRZ-treated group at week 6 (P < 0.05). Although markers of inflammation (nuclear transcription factor κB), apoptosis [poly (ADP-ribose) polymerase-1 and the ratio of BCL2-associated X protein to B-cell lymphoma-extra large], and mitochondrial dysfunction (BCL2-interacting protein 3) were significantly elevated by approximately 2-fold following treatment with RC + DOX + TRZ compared with treatment with RC + saline at week 6, prophylactic administration of FLX, ALA, or SDG partially downregulated these signaling pathways. CONCLUSION: In a chronic in vivo female C57BL/6 mouse model of DOX + TRZ-mediated cardiotoxicity, FLX, ALA, and SDG were partially cardioprotective.


Asunto(s)
Suplementos Dietéticos , Doxorrubicina/efectos adversos , Lino , Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Trastuzumab/efectos adversos , Animales , Antineoplásicos/efectos adversos , Cardiotoxicidad , Femenino , Ratones , Ratones Endogámicos C57BL , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA