Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Altern Lab Anim ; 52(2): 117-131, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235727

RESUMEN

The first Stakeholder Network Meeting of the EU Horizon 2020-funded ONTOX project was held on 13-14 March 2023, in Brussels, Belgium. The discussion centred around identifying specific challenges, barriers and drivers in relation to the implementation of non-animal new approach methodologies (NAMs) and probabilistic risk assessment (PRA), in order to help address the issues and rank them according to their associated level of difficulty. ONTOX aims to advance the assessment of chemical risk to humans, without the use of animal testing, by developing non-animal NAMs and PRA in line with 21st century toxicity testing principles. Stakeholder groups (regulatory authorities, companies, academia, non-governmental organisations) were identified and invited to participate in a meeting and a survey, by which their current position in relation to the implementation of NAMs and PRA was ascertained, as well as specific challenges and drivers highlighted. The survey analysis revealed areas of agreement and disagreement among stakeholders on topics such as capacity building, sustainability, regulatory acceptance, validation of adverse outcome pathways, acceptance of artificial intelligence (AI) in risk assessment, and guaranteeing consumer safety. The stakeholder network meeting resulted in the identification of barriers, drivers and specific challenges that need to be addressed. Breakout groups discussed topics such as hazard versus risk assessment, future reliance on AI and machine learning, regulatory requirements for industry and sustainability of the ONTOX Hub platform. The outputs from these discussions provided insights for overcoming barriers and leveraging drivers for implementing NAMs and PRA. It was concluded that there is a continued need for stakeholder engagement, including the organisation of a 'hackathon' to tackle challenges, to ensure the successful implementation of NAMs and PRA in chemical risk assessment.


Asunto(s)
Rutas de Resultados Adversos , Inteligencia Artificial , Animales , Humanos , Pruebas de Toxicidad , Medición de Riesgo , Bélgica
2.
Molecules ; 28(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005359

RESUMEN

Considering the global increase in fish consumption, the growing side-streams coming from the fish supply chain (e.g., skin, fins, tail, heads…), also including undersized or "unwanted catches", have been recently proposed as source of high-value bioactive compounds (e.g., peptides and fatty acids). In this case study, hydrolyzed collagen peptides (HCPs) were extracted from different parts of Mugil cephalus L. using environmentally friendly techniques such as ultrasounds and enzymatic treatments. Both a mixed biomass derived from the skin, fins, and tail, and a whole fish, were considered as starting biomass, simulating the unsorted processing side-streams and an undersized/unwanted catch, respectively. The extracted HCPs were purified in fractions (<3 KDa and >3 KDa) whose yields (about 5% and 0.04-0.3%, respectively) demonstrated the efficiency of the hydrolysis process. The extraction protocol proposed allowed us to also isolate the intermediate products, namely the lipids (about 8-10%) and the non-collagenous proteins (NCs, 16-23%), whose exploitation could be considered. Each sample was characterized using Sircol, UltraViolet-Spectra, and hydroxyproline assay, and the viability of their collagen fractions was tested on human endothelial cells. Significant effects were obtained at a fraction of <3 KDa, in particular at a concentration of 0.13 µg/mL. The T-scratch test was also performed, with positive results in all fractions tested.


Asunto(s)
Colágeno , Células Endoteliales , Animales , Humanos , Células Endoteliales/metabolismo , Colágeno/química , Piel/metabolismo , Antioxidantes/química , Peces/metabolismo , Péptidos/química
3.
Planta Med ; 88(1): 9-19, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33142346

RESUMEN

Nonalcoholic fatty liver disease is a metabolic disorder characterized by lipid overloading in hepatocytes that can progress pathogenically and even end in hepatocellular carcinoma. Nonalcoholic fatty liver disease pharmacological treatment is still limited by unwanted side effects, whereas the use of food components with therapeutic potential is advisable. The culinary use of marine algae is traditional for some populations and reviving worldwide, with promising health outcomes due to the large number of bioactive compounds found in seaweeds. The present review focuses on brown-algae polysaccharides, particularly fucoidan, alginate, and laminarin, and summarizes the experimental evidence of their potential effects against nonalcoholic fatty liver disease onset and progression. In vitro and in vivo studies demonstrate that brown-algae polysaccharides exert beneficial actions on satiety feeling, caloric intake, fat absorption, and modulation of the gut microbiota, which could account for indirect effects on energy and lipid homeostasis, thus diminishing the fat overload in the liver. Specific effects against nonalcoholic fatty liver disease pathogenesis and worsening are also described and sustained by the antioxidant, anti-inflammatory, and antisteatotic properties of brown-algae polysaccharides. Further studies are required to clarify the mechanism of action of brown-algae polysaccharides on liver cells, to determine the composition and bioavailability of brown-algae polysaccharides present in different algal sources and to probe the clinical availability of these compounds in the form of algal foods, food supplements, and regulated therapeutics.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Phaeophyceae , Alginatos , Antioxidantes , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Polisacáridos/farmacología
4.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364243

RESUMEN

Many different amphibian skin peptides have been characterized and proven to exert various biological actions, such as wound-healing, immunomodulatory, anti-oxidant, anti-inflammatory and anti-diabetic effects. In this work, the possible anti-steatotic effect of macrotympanain A1 (MA1) (FLPGLECVW), a skin peptide isolated from the Chinese odorous frog Odorrana macrotympana, was investigated. We used a well-established in vitro model of hepatic steatosis, consisting of lipid-loaded rat hepatoma FaO cells. In this model, a 24 h treatment with 10 µg/mL MA1 exerted a significant anti-steatotic action, being able to reduce intracellular triglyceride content. Accordingly, the number and diameter of cytosolic lipid droplets (LDs) were reduced by peptide treatment. The expression of key genes of hepatic lipid metabolism, such as PPARs and PLINs, was measured by real-time qPCR. MA1 counteracted the fatty acid-induced upregulation of PPARγ expression and increased PLIN3 expression, suggesting a role in promoting lipophagy. The present data demonstrate for the first time a direct anti-steatotic effect of a peptide from amphibian skin secretion and pave the way to further studies on the use of amphibian peptides for beneficial actions against metabolic diseases.


Asunto(s)
Hígado Graso , Ratas , Animales , Hígado Graso/metabolismo , Ranidae/metabolismo , Piel/metabolismo , Péptidos/farmacología , Péptidos/química , PPAR gamma/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199136

RESUMEN

Bisphenol A (BPA) is a widespread environmental contaminant, found in human fluids and tissues. Maternal BPA exposure is associated with alterations in pregnancy outcomes. Because maternal uterine circulation plays a crucial role in normal placenta and fetal growth, we hypothesized that BPA compromises the function of uterine arteries (UAs) and fetoplacental development. Female rats were orally administered with BPA (2.5, 25 and 250 µg/kg/day) or with its vehicle (ethanol) for 30 days before pregnancy and during the first 20 days of pregnancy. To compare the effect of BPA in the reproductive vs. systemic circulation, it was tested on UAs and mesenteric arteries (MAs). Arteries were isolated and examined by pressure myography. Moreover, fetuses and placentas were weighed to provide an index of reproductive performance. In UAs of BPA-treated rats, lumen diameter, acetylcholine-relaxation and expressions of endothelial nitric oxide synthase 3 (NOS3), estrogen receptor α (ERα) and peroxisome proliferator-activated receptor É£ (PPARÉ£) were reduced. Conversely, no changes were observed in MAs. BPA treatment also reduced placental weights, while fetal weights were increased. For the first time, our results indicate that UAs represent a specific target of BPA during pregnancy and provide insight into the molecular mechanisms that underlie its negative effects on pregnancy outcomes.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Compuestos de Bencidrilo/efectos adversos , Desarrollo Fetal/efectos de los fármacos , Exposición Materna/efectos adversos , Fenoles/efectos adversos , Placenta/efectos de los fármacos , Arteria Uterina/efectos de los fármacos , Animales , Biomarcadores , Relación Dosis-Respuesta a Droga , Femenino , Placenta/metabolismo , Embarazo , Ratas , Arteria Uterina/metabolismo , Arteria Uterina/patología
6.
Molecules ; 26(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361619

RESUMEN

Fucoidan is a fucose-rich sulfated polysaccharide typically found in the cell wall of marine algae but also recently isolated from terrestrial sources. Due to a variety of biological activities, including antioxidant properties, fucoidan exhibits an attractive therapeutic potential against a wide array of metabolic diseases associated with oxidative stress. We used FTIR, 1H NMR and 13C NMR spectroscopy to investigate the structural features of a fucoidan fraction extracted from the brown alga Cystoseira compressa (CYS). The antioxidant potential of CYS was measured by DPPH, ABTS and FRAP assays, which revealed a radical scavenging capacity that was confirmed in in vitro cellular models of hepatic and endothelial cells. The same antioxidant effects were observed for another fucoidan fraction previously identified in the terrestrial tree Eucalyptus globulus (EUC). Moreover, in hepatic cells, CYS and EUC exhibited a significant antisteatotic action, being able to reduce intracellular triglyceride content through the regulation of key genes of hepatic lipid metabolism. EUC exerted stronger antioxidant and antisteatotic effects as compared to CYS, suggesting that both marine and terrestrial sources should be considered for fucoidan extraction and therapeutic applications.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos/efectos de los fármacos , Phaeophyceae/química , Polisacáridos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Humanos , Polisacáridos/química , Polisacáridos/farmacología , Ratas
7.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671715

RESUMEN

Fucoidan is a fucose-rich sulfated polysaccharide with attractive therapeutic potential due to a variety of biological activities, including antioxidant action. Fucoidan is typically found in the cell wall of marine brown algae, but extra-algal sources have also been discovered. In the present work, for the first time we extracted a water soluble fucoidan fraction from the roots of the terrestrial shrub Ferula hermonis. This fucoidan fraction was termed FUFe, and contained fucose, glucose, sulfate, smaller amounts of monosaccharides such as galactose and mannose, and a minor quantity of proteins. FUFe structural features were investigated by FTIR, 1H NMR and 13C NMR spectroscopy. The antioxidant property of FUFe was measured by DPPH, ABTS and FRAP assays, which revealed a high radical scavenging capacity that was confirmed in in vitro cellular models. In hepatic and endothelial cells, 50 µg/mL FUFe could reduce ROS production induced by intracellular lipid accumulation. Moreover, in hepatic cells FUFe exhibited a significant antisteatotic action, being able to reduce intracellular triglyceride content and to regulate the expression of key genes of hepatic lipid metabolism. Altogether, our results candidate FUFe as a possible bioactive compound against fatty liver disease and related vascular damage.


Asunto(s)
Antioxidantes/farmacología , Ferula/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Polisacáridos/farmacología , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Células Cultivadas , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Líbano , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Ratas , Especies Reactivas de Oxígeno/metabolismo , Ácidos Sulfónicos/antagonistas & inhibidores
8.
Molecules ; 26(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379170

RESUMEN

The Ugi four-component reaction employing naturally occurred ferulic acid (FA) is proposed as a convenient method to synthesize feruloyl tertiary amides. Applying this strategy, a peptoid-like derivative of ferulic acid (FEF77) containing 2 additional hydroxy-substituted aryl groups, has been synthesized. The influence of the configuration of the double bond of ferulic acid and feruloyl amide on the antioxidant activity has been investigated thanks to light-mediated isomerization studies. At the cellular level, both FA, trans and cis isomers of FEF77 were able to protect human endothelial cord vein (HECV) cells from the oxidative damage induced by exposure to hydrogen peroxide, as measured by cell viability and ROS production assays. Moreover, in steatotic FaO rat hepatoma cells, an in vitro model resembling non-alcoholic fatty liver disease (NAFLD), the molecules exhibited a lipid-lowering effect, which, along with the antioxidant properties, points to consider feruloyl amides for further investigations in a therapeutic perspective.


Asunto(s)
Amidas/farmacología , Antioxidantes/fisiología , Ácidos Cumáricos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/química , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
9.
Molecules ; 24(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669405

RESUMEN

Amphibian skin is not to be considered a mere tegument; it has a multitude of functions related to respiration, osmoregulation, and thermoregulation, thus allowing the individuals to survive and thrive in the terrestrial environment. Moreover, amphibian skin secretions are enriched with several peptides, which defend the skin from environmental and pathogenic insults and exert many other biological effects. In this work, the beneficial effects of amphibian skin peptides are reviewed, in particular their role in speeding up wound healing and in protection from oxidative stress and UV irradiation. A better understanding of why some species seem to resist several environmental insults can help to limit the ongoing amphibian decline through the development of appropriate strategies, particularly against pathologies such as viral and fungal infections.


Asunto(s)
Anfibios/metabolismo , Péptidos/farmacología , Sustancias Protectoras/farmacología , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Glándulas Exocrinas/metabolismo , Depuradores de Radicales Libres , Humanos , Péptidos/química , Sustancias Protectoras/química , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
10.
Eur J Nutr ; 57(5): 1793-1805, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28526925

RESUMEN

PURPOSE: Phenolic compounds (PC) of virgin olive oil exert several biochemical and pharmacological beneficial effects. Some dietary PC seem to prevent/improve obesity and metabolic-related disorders such as non-alcoholic fatty liver disease (NAFLD). We investigated the possible effects of PC extracted from olive pomace (PEOP) and of the main single molecules present in the extract (tyrosol, apigenin, oleuropein, p-coumaric and caffeic acid) in protecting hepatocytes and endothelial cells against triglyceride accumulation and oxidative stress. METHODS: Rat hepatoma and human endothelial cells were exposed to a mixture of oleate/palmitate to mimic the condition of NAFLD and atherosclerosis, respectively. Then, cells were incubated for 24 h in the absence or in the presence of PC or PEOP. Different parameters were evaluated, such as lipid accumulation and oxidative stress-related markers. RESULTS: In hepatic cells, expression of peroxisome proliferator-activated receptors (PPARs) and of stearoyl-CoA desaturase 1 (SCD-1) were assessed as index of lipid metabolism. In endothelial cells, expression of intercellular adhesion molecule-1 (ICAM-1), activation of nuclear factor kappa-B (NF-kB), release of nitric oxide (NO), and wound-healing rate were assessed as index of inflammation. CONCLUSION: PEOP extract ameliorated hepatic lipid accumulation and lipid-dependent oxidative imbalance thus showing potential applications as therapeutic agent tuning down hepatosteatosis and atherosclerosis.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/metabolismo , Ácidos Grasos/efectos adversos , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos , Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas
11.
Ann Hepatol ; 16(5): 707-719, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809727

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in industrialized countries and is associated with increased risk of cardiovascular, hepatic and metabolic diseases. Molecular mechanisms on the root of the disrupted lipid homeostasis in NAFLD and potential therapeutic strategies can benefit of in vivo and in vitro experimental models of fatty liver. Here, we describe the high fat diet (HFD)-fed rat in vivo model, and two in vitro models, the primary cultured rat fatty hepatocytes or the FaO rat hepatoma fatty cells, mimicking human NAFLD. Liver steatosis was invariably associated with increased number/size of lipid droplets (LDs) and modulation of expression of genes coding for key genes of lipid metabolism such as peroxisome proliferator-activated receptors (Ppars) and perilipins (Plins). In these models, we tested the anti-steatotic effects of 3,5-L-diiodothyronine (T2), a metabolite of thyroid hormones. T2 markedly reduced triglyceride content and LD size acting on mRNA expression of both Ppars and Plins. T2 also stimulated mitochondrial oxidative metabolism of fatty acids. We conclude that in vivo and especially in vitro models of NAFLD are valuable tools to screen a large number of compounds counteracting the deleterious effect of liver steatosis. Because of the high and negative impact of liver steatosis on human health, ongoing experimental studies from our group are unravelling the ultimate translational value of such cellular models of NAFLD.


Asunto(s)
Diyodotironinas/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Línea Celular Tumoral , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Transducción de Señal/efectos de los fármacos , Investigación Biomédica Traslacional/métodos
12.
Cell Physiol Biochem ; 33(2): 344-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24525903

RESUMEN

BACKGROUND/AIMS: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs) and stored in lipid droplets (LDs). The lipid lowering action of 3,5-diiodo-L-thyronine (T2) on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion. METHODS: FaO cells were exposed to oleate/palmitate, then treated with T2. RESULTS: T2 reduced number and size of LDs, and modified their acyl composition by decreasing the content of saturated (SFA) vs monounsaturated (MUFA) fatty acids thus reversing the SFA/MUFA ratio. The expression of the LD-associated proteins adipose differentiation-related protein (ADRP), oxidative tissue-enriched PAT protein (OXPAT), and adipose triglyceride lipase (ATGL) was increased in 'steatotic' cells and further up-regulated by T2. Moreover, T2 stimulated the mitochondrial oxidation by up-regulating carnitine-palmitoyl-transferase (CPT1), uncoupling protein 2 (UCP2) and very long-chain acyl-coenzyme A dehydrogenase (VLCAD). CONCLUSIONS: T2 leads to mobilization of TAGs from LDs and stimulates mitochondrial oxidative metabolism of fatty acids, in particular of SFAs, and thus enriches of MUFAs the LDs. This action may protect the hepatocyte from excess of SFAs that are more toxic than MUFAs.


Asunto(s)
Diyodotironinas/toxicidad , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/patología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Lipasa/biosíntesis , Mitocondrias Hepáticas/patología , Proteínas Musculares/biosíntesis , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Oxidación-Reducción , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Perilipina-5 , Ratas
13.
Front Public Health ; 12: 1326453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500723

RESUMEN

Introduction: Coastal seawater pollution poses a public health risk due to the potential ingestion of contaminated water during recreational activities. Wastewater-based epidemiology has revealed the abundant presence of SARS-CoV-2 in seawater emitted from wastewater outlets. The objective of this research was to investigate the impact of seawater on SARS-CoV-2 infectivity to assess the safety of recreational activities in seawater. Methods: Wild SARS-CoV-2 was collected from oral swabs of COVID-19 affected patients and incubated for up to 90 min using the following solutions: (a) standard physiological solution (control), (b) reconstructed seawater (3.5% NaCl), and (c) authentic seawater (3.8%). Samples were then exposed to two different host systems: (a) Vero E6 cells expressing the ACE2 SARS-CoV-2 receptor and (b) 3D multi-tissue organoids reconstructing the human intestine. The presence of intracellular virus inside the host systems was determined using plaque assay, quantitative real-time PCR (qPCR), and transmission electron microscopy. Results: Ultrastructural examination of Vero E6 cells revealed the presence of virus particles at the cell surface and in replicative compartments inside cells treated with seawater and/or reconstituted water only for samples incubated up to 2 min. After a 90-min incubation, the presence of the virus and its infectivity in Vero E6 cells was reduced by 90%. Ultrastructural analysis performed in 3D epi-intestinal tissue did not reveal intact viral particles or infection signs, despite the presence of viral nucleic acid detected by qPCR. Indeed, viral genes (Orf1ab and N) were found in the intestinal luminal epithelium but not in the enteric capillaries. These findings suggest that the intestinal tissue is not a preferential entry site for SARS-CoV-2 in the human body. Additionally, the presence of hypertonic saline solution did not increase the susceptibility of the intestinal epithelium to virus penetration; rather, it neutralized its infectivity. Conclusion: Our results indicate that engaging in recreational activities in a seawater environment does not pose a significant risk for COVID-19 infection, despite the possible presence of viral nucleic acid deriving from degraded and fragmented viruses.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , Salud Pública , Agua de Mar , Agua , Permeabilidad
14.
Nutrients ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771500

RESUMEN

The novel term metabolic dysfunction-associated fatty liver disease (MAFLD), which has been proposed to describe the major cause of hepatic disease, pinpoints the coexistence of multiple metabolic disturbances and liver steatosis, giving rise to different phenotypic manifestations. Within the psychoneuroendocrineimmunological (PNEI) network that regulates body-mind interactions, the stress response plays a pervasive role by affecting metabolic, hormonal, immune, and behavioral balance. In this perspective, we focus on chronic psychosocial stress and high levels of cortisol to highlight their role in MAFLD pathogenesis and worsening. From a PNEI perspective, considering the stress response as a therapeutic target in MAFLD allows for simultaneously influencing multiple pathways in the development of MAFLD, including dysmetabolism, inflammation, feeding behaviors, gut-liver axis, and dysbiosis, with the hope of better outcomes.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Disbiosis , Hidrocortisona , Inflamación
15.
Gels ; 9(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37754441

RESUMEN

This study presents for the first time a scalable process for the extraction of valuable proteins starting from samples of unsorted mixed tuna scraps which were previously dehydrated by an industrial patented process. The aims of this work were both to avoid the onerous sorting step of tuna leftovers, which generally consists of isolating skin and bones for collagen/gelatin extraction, and to improve the logistic of managing highly perishable biomass thanks to the reduction in its volume and to its microbiological stabilization. In view of a zero-waste economy, all the protein fractions (namely, non-collagenous proteins NCs and ALKs, gelatin, and hydrolyzed gelatin peptides, HGPs) isolated in the proposed single cascade flowchart were stabilized and preliminarily characterized. The extraction flowchart proposed allows one to obtain the following most promising compounds: 1.7 g of gelatin, 3.2 g of HGPs, and 14.6 g of NCs per 100 g of dehydrated starting material. A focus on oven-dried gelatin was reported in terms of proximate analysis, amino acid composition, color parameters, FT-IR spectrum, pH, and viscoelastic properties (5 mPa·s of viscosity and 14.3 °C of gelling temperature). All the obtained extracts are intended to be exploited in food supplements, feed, fertilizers/plant bio-stimulants, packaging, and the cosmetic industry.

16.
Environ Sci Pollut Res Int ; 30(48): 106660-106670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37733200

RESUMEN

Crucial information on the pandemic's spread has been gathered by monitoring the trend of SARS-CoV-2 in wastewater. This surveillance has highlighted that the initial concentration is a critical step of the analytical procedure due to the low viral titer that may be present in this matrix. This paper presents the results of the evaluation of two different wastewater concentration protocols to determine the most efficient and cost-effective. The two methods tested were the following: (a) a biphasic separation system with PEG-dextran and (b) a PEG/NaCl precipitation protocol. Other aspects of the detection method were also investigated including the influence of storage temperature on virus recovery and the heat treatment of pasteurization, which aims to make samples safer for operators and the environment. The PEG/NaCl precipitation method was found to perform better than the biphasic separation system, allowing for more sensitive identification of the presence of the virus and the detection of a higher viral titer than that identified with the biphasic separation in all results. Storage of the samples at 4.3±0.2°C for up to 3 weeks did not adversely affect the virus titer and the pasteurization pre-treatment increases operator safety and maintains the identification of the viral concentration.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cloruro de Sodio , Aguas Residuales , Pasteurización
17.
Front Cell Dev Biol ; 11: 1305835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250328

RESUMEN

Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35954723

RESUMEN

Aluminum is an element found in nature and in cosmetic products. It can interfere with the metabolism of other cations, thus inducing gastrointestinal disorder. In cosmetics, aluminum is used in antiperspirants, lipsticks, and toothpastes. The aim of this work is to investigate aluminum bioavailability after accidental oral ingestion derived from the use of a toothpaste containing a greater amount of aluminum hydroxide than advised by the Scientific Committee on Consumer Safety (SCCS). To simulate in vitro toothpaste accidental ingestion, the INFOGEST model was employed, and the amount of aluminum was measured through the ICP-AES analysis. Tissue barrier integrity was analyzed by measuring transepithelial electric resistance, and the tissue architecture was checked through light microscopy. The margin of safety was also calculated. Overall, our results indicate that the acute exposure to aluminum accidentally ingested from toothpastes is safe for the final user, even in amounts higher than SCCS indications.


Asunto(s)
Aluminio , Cosméticos , Disponibilidad Biológica , Seguridad de Productos para el Consumidor , Cosméticos/toxicidad , Pastas de Dientes
19.
Life Sci ; 297: 120468, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288175

RESUMEN

INTRODUCTION: Ischemia-Reperfusion (I/R) damage is one of the major challenges in cardiothoracic surgeries and in a pathological manner, is identified by exacerbated damage signals resulted from blood supply restriction and subsequent flow restoration and re­oxygenation. I/R damage includes cellular dysfunction and death, impairing tissue and organ function. Inflammation and oxidative stress are known to underlie either ischemia or reperfusion, leaded by HIF, TNF-α, NF-κB, IL-6 and ROS formation. However, the available approaches to prevent I/R damage has been unsuccessful so far. As agonists of peroxisome-proliferation activation receptor (PPAR) are described as transcription factors related to anti-inflammatory factors, we proposed to observe the effects of novel dual agonist, GQ-11, in I/R-related damage. METHODS: Male, Wistar rats, 60 days age and 305 g body weight average were treated with vehicle, pioglitazone or GQ-11 (20 mg/kg) for 7 consecutive days and were submitted to aorta clamping for 30 min followed by 3 h of reperfusion. 18F-fluorodeoxyglucose (18F-FDG), an analog of glucose associated with inflammation when accumulated, was observed in liver and bowel by positron emission tomography (PET). RESULTS: GQ-11 decreased 18F-FDG uptake in liver and bowel when compared to vehicle and pioglitazone. The treatment also modulated inflammatory markers IL-10, TGF-ß, IL-6, IL1-ß, TNFα, and CCL-2, besides antioxidant enzymes such as catalase, GPx and SOD. CONCLUSION: Inflammation and oxidative stress showed to be important processes to be regulated in I/R in order to prevent exacerbated responses that leads to cell/tissue dysfunction and death. PPAR agonists - including GQ-11 - might be promising agents in a strategy to avoid tissue dysfunction and death after cardiothoracic surgeries.


Asunto(s)
PPAR alfa , Daño por Reperfusión , Animales , Aorta/patología , Constricción , Masculino , PPAR gamma/agonistas , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
20.
J Hepatol ; 54(6): 1230-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21145833

RESUMEN

BACKGROUND & AIMS: Previous studies have demonstrated that 3,5-L-diiodothyronine (T(2)) is able to prevent lipid accumulation in the liver of rats fed a high-fat diet. Whether this effect is due to a direct action of T(2) on the liver has not been elucidated. In this study, we investigated the ability of T(2) to reduce the excess lipids in isolated hepatocytes treated with fatty acids (FFAs). The effects of T(2) were compared with those elicited by 3,3',5-L-triiodothyronine (T(3)). METHODS: To mimic the fatty liver condition, primary cultures of rat hepatocytes were overloaded with lipids, by exposure to FFAs ("fatty hepatocytes"), and then treated with T(2) or T(3). Lipid content, morphometry of lipid droplets (LDs), and expression of the adipocyte differentiation-related protein (ADRP) and the peroxisome proliferator-activated receptors (PPAR-α, -γ, -δ) were evaluated. Activities of the lipolytic enzyme acyl CoA oxidase-AOX and the antioxidant enzymes superoxide dismutase-SOD and catalase-CAT were also determined. RESULTS: FFA-induced lipid accumulation was associated with an increase in both number/size of LDs and expression of ADRP, PPAR-γ, and PPAR-δ/ß mRNAs, as well as in the activities of AOX, SOD, and CAT. The addition of T(2) or T(3) to "fatty hepatocytes" resulted in a reduction in: (i) lipid content and LD diameter; (ii) PPAR-γ and PPAR-δ expression; (iii) activities of AOX and antioxidant enzymes. CONCLUSIONS: These data demonstrate, for the first time, a direct action of both T(2) and T(3) in reducing the excess fat in cultured hepatocytes.


Asunto(s)
Diyodotironinas/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Triyodotironina/farmacología , Acil-CoA Oxidasa/metabolismo , Animales , Catalasa/metabolismo , Células Cultivadas , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Expresión Génica/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico , Ácido Oléico/administración & dosificación , PPAR alfa/genética , PPAR delta/genética , PPAR gamma/genética , Palmitatos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA