Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Syst Biol ; 14(11): e8371, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478237

RESUMEN

Our limited ability to predict genotype-phenotype relationships has called for strategies that allow testing of thousands of hypotheses in parallel. Deep scanning mutagenesis has been successfully implemented to map genotype-phenotype relationships at a single-protein scale, allowing scientists to elucidate properties that are difficult to predict. However, most phenotypes are dictated by several proteins that are interconnected through complex and robust regulatory and metabolic networks. These sophisticated networks hinder our understanding of the phenotype of interest and limit our capabilities to rewire cellular functions. Here, we leveraged CRISPR-EnAbled Trackable genome Engineering to attempt a parallel and high-resolution interrogation of complex networks, deep scanning multiple proteins associated with lysine metabolism in Escherichia coli We designed over 16,000 mutations to perturb this pathway and mapped their contribution toward resistance to an amino acid analog. By doing so, we identified different routes that can alter pathway function and flux, uncovering mechanisms that would be difficult to rationally design. This approach sets a framework for forward investigation of complex multigenic phenotypes.


Asunto(s)
Escherichia coli/metabolismo , Lisina/metabolismo , Redes y Vías Metabólicas , Mutación , Sistemas CRISPR-Cas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biblioteca de Genes , Fenotipo
2.
ACS Synth Biol ; 5(7): 561-8, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27072506

RESUMEN

Methods for importing heterologous genes into genetically tractable hosts are among the most desired tools of synthetic biology. Easy plug-and-play construction methods to rapidly test genes and pathways stably in the host genome would expedite synthetic biology and metabolic engineering applications. Here, we describe a CRISPR-based strategy that allows highly efficient, single step integration of large pathways in Escherichia coli. This strategy allows high efficiency integration in a broad range of homology arm sizes and genomic positions, with efficiencies ranging from 70 to 100% in 7 distinct loci. To demonstrate the large size capability, we integrated a 10 kb construct to implement isobutanol production in a single day. The ability to efficiently integrate entire metabolic pathways in a rapid and markerless manner will facilitate testing and engineering of novel pathways using the E. coli genome as a stable testing platform.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Proteínas Bacterianas/genética , Butanoles/metabolismo , Proteína 9 Asociada a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Ingeniería Genética/métodos , Genoma Bacteriano , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Redes y Vías Metabólicas , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Mutación , ARN Guía de Kinetoplastida , Reproducibilidad de los Resultados
3.
Curr Opin Chem Biol ; 28: 150-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26302383

RESUMEN

Since the 1970s technological advancements in the fields of synthetic biology and metabolic engineering have led to a dramatic reduction in both time and cost required for generating genomic mutations in a variety of organisms. The union of genomic editing machinery, DNA inkjet printers, and bioinformatics algorithms allows engineers to design a library of thousands of unique oligos as well as build and test these designs on a ∼2 months time-scale and at a cost of roughly ∼0.3 cents per base pair. The implications of these capabilities for a variety of fields are far-reaching, with potential impacts in defense, agricultural, human health, and environmental research. The explosion of synthetic biology applications over the past two decades have led many to draw parallels between biological engineering and the computer sciences. In this review, we highlight some important parallels between these fields and emphasize the importance of engineering design strategies.


Asunto(s)
Biología Computacional/métodos , ADN/síntesis química , ADN/genética , Ingeniería Genética/métodos , Biología Sintética/métodos , Animales , Biología Computacional/economía , ADN/química , Ingeniería Genética/economía , Humanos , Biología Sintética/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA