Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Ecotoxicol Environ Saf ; 250: 114513, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610296

RESUMEN

Thiamethoxam (TMX) is a systemic neonicotinoid that acts as a partial agonist of the nicotinic acetylcholine receptors (nAChRs). However, target species have shown resistance to formulations based on such neonicotinoids, which can also be expected for non-target insects. This research aimed to study the effects of a formulation based on TMX [Cruiser® 350 FS (CRZ)] on the life traits of Chironomus xanthus filial generation (F1) and compare it with the parental generation (P). Environmentally relevant concentrations of CRZ significantly decreased larvae growth P generation , also slowing and decreasing their emergence. Larvae of the F1 generation were less sensitive than their parents, suggesting that the progeny were able to thrive and perform basic physiological functions better than the parental generation. Our results highlight that insect resistance to neonicotinoids may be associated with the better performance of the filial generation, which is related to the change in affinities of the active ingredient for the sub-units constituting the nAChRs subtypes of F1 organisms, inherited from P organisms that were able to survive and reproduce. Moreover, further studies using biochemical and omics tools should be performed to disentangle the specific changes occurring at the nAChRs throughout insect development.


Asunto(s)
Chironomidae , Insecticidas , Receptores Nicotínicos , Animales , Insecticidas/farmacología , Larva , Chironomidae/genética , Tiametoxam/farmacología , Neonicotinoides/toxicidad , Insectos , Receptores Nicotínicos/genética , Nitrocompuestos/toxicidad
2.
Ecotoxicol Environ Saf ; 245: 114092, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155333

RESUMEN

Clothianidin (CLO) is an insecticide belonging to the second-generation class of neonicotinoids. In this study, we evaluated how CLO affects the survival and the complete life cycle of the tropical insect Chironomus xanthus, a non-target species, considering the Parental (P) and Filial (F1) generations. We found a 48 h-lethal concentration (LC50) of CLO of 3.78 µg/L. The lowest observed effect concentrations (LOECs) were: i) for body growth and head capsule width in P generation = 47.3 ng/L CLO; ii) for body growth and head capsule width in F1 generation larvae = 80 and 36.4 ng/L CLO, respectively; iii) for cumulative emergence it was 80 ng/L CLO in the P generation, while there was no significant difference in the F1 generation; iv) for total developmental time for males and females = 61.53 ng/L in P generation; v) in the F1 generation, the LOEC was determined to be 36.4 ng/L for males and 80 ng/L for females; vi) The number of total hatched eggs and total hatched eggs/female had LOECs of 36.4 ng/L CLO for both generations. Our study reveals that environmentally relevant concentrations of the CLO-based insecticide are highly toxic to C. xanthus. It also shows that the F1 generation, resulting from parents exposed to CLO was not clearly resistant to the insecticide. This fact might be explained by the different effects observed for males and females of F1 generation. Understanding the sub-types of acetylcholine receptors present on target and non-target insect species and toxicological effects of neonicotinoids seems to be desirable for the insecticide industry to deal with insect pests and the environmental protection of non-target organisms.


Asunto(s)
Chironomidae , Insecticidas , Acetilcolina/farmacología , Animales , Femenino , Guanidinas , Insectos , Insecticidas/toxicidad , Larva , Masculino , Neonicotinoides/toxicidad , Receptores Colinérgicos , Tiazoles
3.
Ecotoxicol Environ Saf ; 207: 111375, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987189

RESUMEN

Freshwater sediments are a repository of microplastics (MPs) resulting from inland anthropogenic activities. Benthic invertebrates, particularly endobenthic sediment-ingesting species such as the annelid Lumbriculus variegatus (blackworm), are commonly found in contaminated sediments where they likely find and ingest MPs. In the present study, L. variegatus was exposed to concentrations between 0.51 and 20 g kg-1 dry sediment of four size-classes of irregularly-shaped polyethylene MPs (PE-MPs; size-class A: 32-63, B: 63-125, C: 125-250 and D: 250-500 µm) for 48 h to assess their sub-cellular responses to particles ingested, and for 28 days to determine chronic effects on worm's reproduction and biomass. After the short-term exposure (48 h), number of PE-MPs in blackworms' gut were related to MPs concentration in the sediment. In general, PE-MPs ingestion by blackworms induced depletion of their energy reserves (e.g., sugars in all size classes and lipids in the size-classes of PE-MPs > 125 µm), concomitant with the activation of antioxidant and detoxification mechanisms (increased level of total glutathione in all size-classes, and increased glutathione-S-transferase activity in PE-MPs > 250 µm), preventing lipid peroxidation. In addition, it was observed a reduction of aerobic energy production (decreased activity of the electron transport system) and a slight increase in neurotransmission (cholinesterase activity). After a long-term exposure (28 d), the presence and ingestion of PE-MPs did not affect reproduction and biomass of L. variegatus. The activation and efficiency of the antioxidant and detoxification mechanisms allied with the anatomy and physiology of L. variegatus, its feeding strategy and potentially dynamic ingestion/egestion capacity seem to be key features preventing MP deleterious effects under short- and chronic-exposures. Considering the MPs levels reported for freshwater sediments, and despite evidence of MPs ingestion and some sub-organismal effects, our results suggest no adverse impacts of PE-MPs contamination on L. variegatus populations fitness. This study applies an integrative approach in which data concerning the ingestion of different sized MPs and subsequent sub-cellular and apical responses are delivered, raising knowledge on endobenthic invertebrates' strategies to potentially overcome MP toxicity in field contaminated sites.


Asunto(s)
Microplásticos/toxicidad , Oligoquetos/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Ingestión de Alimentos , Agua Dulce , Sedimentos Geológicos , Oligoquetos/efectos de los fármacos , Plásticos/toxicidad , Polietileno , Reproducción/efectos de los fármacos
4.
J Toxicol Environ Health A ; 80(23-24): 1259-1268, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28891787

RESUMEN

Zebrafish early life stages were found to be sensitive to several synthetic dyes widely used in industries. However, as environmental concentrations of such contaminants are often at sublethal levels, more sensitive methods are required to determine early-warning adverse consequences. The aim of this study was to utilize a multibiomarker approach to examine underlying oxidative stress mechanisms triggered by sublethal concentrations of synthetic azo dye Basic Red 51 (BR51), the natural dye erythrostominone (ERY), and its light-degraded product using zebrafish embryos. Biochemical biomarkers included parameters of detoxification and markers of antioxidant system, as well as oxidative damage. Results showed pro-oxidant mechanisms attributed to BR51 and ERY as evidenced by increased glutathione S-transferase (GST) activity, a phase II detoxification enzyme related to reactive oxygen species detoxification. BR51 also elevated total glutathione (GSH+GSSG) levels and catalase activity. However, both dyes induced oxidative damage as evidenced by elevated lipid peroxidation content. In contrast, when the natural dye was photodegraded, no marked effects were observed for all biomarkers assessed. Data indicate that such dyes are pro-oxidants at sublethal concentrations, predominantly involving GSH and/or related enzymes pathway.


Asunto(s)
Compuestos Azo/toxicidad , Colorantes/toxicidad , Monitoreo del Ambiente/métodos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Embrión no Mamífero/metabolismo , Pez Cebra/crecimiento & desarrollo
5.
Ecotoxicol Environ Saf ; 143: 210-216, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28551578

RESUMEN

Despite the frequent detection of organic ultraviolet-filters (UV-filters) in freshwater sediments, there is a lack of ecotoxicological data undermining a correct risk assessment for these emerging contaminants. The present study assessed the effects of three of the most commonly used UV-filters (benzophenone-3 - BP3; 3-(4-methylbenzylidene)camphor - 4-MBC and octocrylene - OC) on Chironomus riparius life history and biochemical responses. Standard ecotoxicological assays confirmed that all compounds impaired growth of C. riparius larvae and induced developmental effects such as delayed emergence and a reduction of imagoes weight. Concerning the biochemical responses analysed no evidences of oxidative damage in lipids or neurotoxicity (tested assessing acetylcholinesterase activity) were observed for any of the tested compounds. However, 4-MBC exposure induced a decrease in catalase activity and an increase in glutathione-S-transferase activity at 14.13mg/Kg while OC exposure caused an increase in total glutathione levels at 0.23 and 18.23mg/Kg. Exposure to all UV-filters tested, increased energy consumption on C. riparius with significant differences above 1.00mg/Kg for BP3, 0.09mg/Kg for 4-MBC and 2.13mg/Kg for OC. These results suggest that environmental relevant concentrations of UV-filters can cause deleterious effects to aquatic benthic species, such as C. riparius, and call for further research concerning effects of organic UV-filters on natural invertebrate communities and ecosystem functioning.


Asunto(s)
Acrilatos/toxicidad , Benzofenonas/toxicidad , Alcanfor/análogos & derivados , Chironomidae/efectos de los fármacos , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Alcanfor/toxicidad , Catalasa/metabolismo , Chironomidae/enzimología , Femenino , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Larva/enzimología , Masculino
6.
Ecotoxicol Environ Saf ; 137: 240-246, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27978451

RESUMEN

The insecticide thiamethoxam (TMX) is a systemic neonicotinoid widely used for pest control in several agricultural crops. TMX mimics the action of acetylcholine causing uncontrolled muscular contraction eventually leading to insect death. TMX is being found in freshwater ecosystems at concentrations of up to 225µg/L. Still, chronic toxicity data for freshwater invertebrates is limited. Therefore, the aim of this study was to evaluate the acute and chronic effects (at organismal and biochemical levels) of TMX on the freshwater insect Chironomus riparius. C. riparius life history responses were significantly affected by TMX exposure, namely with a decrease in growth and delay in emergence. Concerning the biochemical responses, after a short exposure (48h) to TMX, our results showed that low concentrations of TMX significantly reduced CAT activity and LPO levels of C. riparius. No effects were observed in AChE, GST and ETS activities. Effects in terms of survival, development rates and biochemical responses of C. riparius exposed to low concentrations of TMX observed in this study suggest potential deleterious effects of this neonicotinoid on aquatic insects inhabiting freshwaters environments near agricultural areas.


Asunto(s)
Chironomidae/efectos de los fármacos , Insecticidas/toxicidad , Nitrocompuestos/toxicidad , Oxazinas/toxicidad , Tiazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Análisis de Varianza , Animales , Chironomidae/crecimiento & desarrollo , Agua Dulce/análisis , Insectos/efectos de los fármacos , Invertebrados/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Estadios del Ciclo de Vida/efectos de los fármacos , Neonicotinoides , Tiametoxam
8.
Sci Total Environ ; 912: 168741, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040350

RESUMEN

Benzotriazoles are heterocyclic compounds typically presenting a benzene ring fused with a triazole molecule. The industry uses these compounds as anti-corrosion agents and recently, they have been employed in the pharmaceutical industry and in detergent formulations. Benzotriazoles persist in the environment, and water treatment plants cannot degrade them completely. Consequently, these compounds have been detected in rivers, lakes, and drinking water, which makes assessing their safety for the human and aquatic animal populations crucial. Here, we have evaluated and compared how exposure to 1H-benzotriazole or 5-chloro-benzotriazole affect the zebrafish embryo-larval stages. We have determined the acute toxicity, morphometric alterations, and acetylcholinesterase activity on zebrafish embryos, as well as behavioral endpoints using the tail coiling assay. The estimated LC50 of 5-chloro-benzotriazole was 19 mg/L, whereas 1H-benzotriazole caused no mortality. The zebrafish embryos exposed to 20 and 25 mg/L 5-chloro-benzotriazole had decreased hatching rate and exhibited pericardial and yolk sac edemas. Furthermore, the embryo length and eye area were decreased, in contrast with an increased yolk sac after exposure to 20 mg/L 5-chloro-benzotriazole. In turn, 1H-benzotriazole also decreased the eye area of zebrafish embryos, but no other significant morphological alterations were observed. The tail coiling assay showed that the zebrafish embryos increased the percentage of time moving and the number of embryonic movements per minute after exposure to 1H-benzotriazole (15 mg/L) or 5-chloro-benzotriazole (20 and 25 mg/L), indicating that these compounds were potentially neurotoxic. However, acetylcholinesterase activity was not significantly altered in embryos exposed to 1H-benzotriazole, but significantly decreased when exposed to 0.05 mg/L 5-chloro benzotriazole confirming its neurotoxicity at a much lower concentration. Our findings showed that 5-chloro-benzotriazole seems to induce more harmful alterations to zebrafish embryos than 1H-benzotriazole. Nevertheless, 1H-benzotriazole seems to induce a direct effect on eye development for concentrations lower than the ones of 5-chloro-benzotriazole affecting zebrafish embryos.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Acetilcolinesterasa , Triazoles/toxicidad , Dosificación Letal Mediana , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad
9.
Sci Total Environ ; 916: 170012, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246377

RESUMEN

The search for new methods in the toxicology field has increased the use of early life stages of zebrafish (Danio rerio) as a versatile organism model. Here, we use early stages of zebrafish to evaluate glyphosate as pure active ingredient and within a commercial formulation in terms of oxidative stress. Biomarkers involved in the oxidative status were evaluated along with other markers of neurotoxicity, genotoxicity, cytotoxicity, energy balance and motor performance, and the selected tools were evaluated by its sensitivity in determining early-warning events. Zebrafish embryos exposed to glyphosate active ingredient and glyphosate-based formulation were under oxidative stress, but only the commercial formulation delayed the embryogenesis, affected the cholinergic neurotransmission and induced DNA damage. Both altered the motor performance of larvae at very low concentrations, becoming larvae hypoactive. The energy balance was also impaired, as embryos under oxidative stress had lower lipids reserves. Although data suggest that glyphosate-based formulation has higher toxicity than the active ingredient itself, the most sensitive biomarkers detected early-warning effects at very low concentrations of the active ingredient. Biochemical biomarkers of defense system and oxidative damage were the most sensitive tools, detecting pro-oxidant responses at very low concentrations, along with markers of motor performance that showed high sensitivity and high throughput, suitable for detecting early effects linked to neurotoxicity. Alterations on morphology during embryogenesis showed the lowest sensitivity, thus morphological alterations appeared after several alterations at biochemical levels. Tools evaluating DNA damage and cell proliferation showed mid-sensitivity, but low throughput, thus they could be used as complementary markers.


Asunto(s)
Glifosato , Herbicidas , Animales , Pez Cebra/fisiología , Glicina/toxicidad , Herbicidas/toxicidad , Estrés Oxidativo , Larva
10.
Biology (Basel) ; 13(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38785819

RESUMEN

Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 µg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38922471

RESUMEN

Advanced oxidative processes, such as Photo-Fenton, transform organic contaminants due to the attack by radicals. In this context, the lethal and sub-lethal effects of the Cruiser® 350FS (CRZ) with the active ingredient thiamethoxam (TMX) were investigated using the planarian Girardia tigrina. Degradation of thiamethoxam by the Fenton process was also assessed by using theoretical studies and the efficiency of Solar-Fenton versus Fenton. The 48 h LC50 value of CRZ for planarians was 478.6 mg L-1. The regeneration of planarians was significantly affected for concentrations ≥ 17 mg·L-1 of TMX (24 h). The Solar-Fenton showed a high degradation percentage reaching ~70%. The theoretical model showed the atoms of the TMX molecule that will suffer attacks from the formed radicals. Current results open new perspectives concerning the treatment of TMX in the aquatic environment because the 70% degradation seems to be sufficient to reach concentrations that do not induce sub-lethal effects in planarians. Further studies should determine if the by-products generated might be toxic for planaria or other organisms.

12.
Ecotoxicol Environ Saf ; 97: 131-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962622

RESUMEN

Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01µmol/min/ml for adults and 0.28±0.03µmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles.


Asunto(s)
Aves/fisiología , Inhibidores de la Colinesterasa/toxicidad , Colinesterasas/sangre , Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Animales , Biomarcadores/sangre , Colinesterasas/metabolismo , Activación Enzimática/efectos de los fármacos
13.
Environ Pollut ; 330: 121749, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127234

RESUMEN

A variety of veterinary and human medicinal products (VHMPs) are found in groundwater, an often-neglected habitat inhabited by species with unique traits, stygobitic species. It is crucial to understand the effect of VHMPs on stygobitic species because they may respond differently to stressors than surface species. Our hypothesis is that groundwater species may be more susceptible to environmental contaminants due to less plasticity in their detoxification response and acquisition of energy because subterranean habitats are more stable and isolated from anthropogenic activities. We performed a battery of biomarkers associated with important physiological functions on the stygobitic asellid crustacean Proasellus lusitanicus, after a 14-day exposure to acetaminophen, a commonly used pharmaceutical and pollutant of groundwaters. Our results show a decrease in total glutathione levels and an increase in glutathione S-transferase activity, suggesting a successful detoxification response. This helps explaining why acetaminophen did not cause oxidative damage, as well as had no effect on cholinesterase activity nor in aerobic production of energy. This study shows the remarkable capacity of P. lusitanicus to tolerate sublethal concentrations of VHMP acetaminophen. Most ecotoxicological studies on stygobitic species focused on the lethal effects of these compounds. The present study focuses on consequences at sublethal concentrations. Future studies should assess the stress levels induced to better predict and estimate the impacts of contaminants on groundwater ecosystems.


Asunto(s)
Acetaminofén , Antioxidantes , Humanos , Acetaminofén/toxicidad , Antioxidantes/metabolismo , Ecosistema , Estrés Oxidativo , Glutatión/metabolismo
14.
Animals (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36899648

RESUMEN

The most documented fibrates are gemfibrozil, clofibrate and bezafibrate, while for statins, the majority of the published literature focuses on atorvastatin and simvastatin. The present work reviews previously published research concerning the effects of these hypocholesterolaemic pharmaceuticals on fish, with a particular focus on commercially important species, commonly produced by the European aquaculture industry, specifically in recirculated aquaculture systems (RAS). Overall, results suggest that both acute and chronic exposures to lipid-lowering compounds may have adverse effects on fish, disrupting their capacity to excrete exogenous substances, as well as both lipid metabolism and homeostasis, causing severe ontogenetic and endocrinological abnormalities, leading to hampered reproductive success (e.g., gametogenesis, fecundity), and skeletal or muscular malformations, having serious repercussions on fish health and welfare. Nonetheless, the available literature focusing on the effects of statins or fibrates on commonly farmed fish is still limited, and further research is required to understand the implications of this matter on aquaculture production, global food security and, ultimately, human health.

15.
Sci Total Environ ; 859(Pt 2): 160426, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427728

RESUMEN

Chironomids inhabit freshwater benthic ecosystems which are prone to microplastic contamination. This work aimed at understanding the factors and mechanisms influencing microplastic uptake and related adverse effects on Chironomus riparius, by exploring an extensive project database, conducting a literature review, and performing an agent-based model to explore trends in data. Results reveal that high concentrations of small microplastics fill the gut of fourth instar C. riparius (99.7 %). Ingested microplastics had an average size of 38-61 µm, presenting slower elimination rates than undigested organic or mineral particles. Ingestion rates of microplastics depend mainly on encounter rates, and therefore on available concentrations, until reaching a plateau corresponding to the maximum gut volume. Short-term toxicity of microplastics seems to result from damage to gut epithelium, with inflammatory reactions, production of reactive oxygen species, and a negative energy balance exacerbated by the lack of food (organic matter). Long-term toxicity is characterized by a reduction in larval body length and increase in mean time to emergence, seemly from increased energy costs rather than a decrease in nutrient absorption. Wild chironomids already present microplastics in their guts and environmental concentrations in hotspots may already exceed no effect concentrations. Therefore, environmental exposure to microplastics may induce adverse effects to wild C. riparius in freshwater benthic ecosystems, which could compromise their ecologic role as deposit-feeders (e.g., reducing their nutrient cycling ability) and key-stone species in aquatic food webs.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Invertebrados
16.
Sci Total Environ ; 888: 164162, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196962

RESUMEN

The greater white-toothed shrew Crocidura russula has been used as a sentinel species for estimating environmental risks to human populations. Previous studies in mining areas have focused on the liver of shrews as the primary target of physiological and metabolic changes due to heavy metal pollution. However, populations persist even when detoxification by the liver seems to be compromised and damage is observed. These pollutant-adapted individuals inhabiting contaminated sites may exhibit altered biochemical parameters that confer increased tolerance in various tissues other than the liver. The skeletal muscle tissue of C. russula might be an alternative tissue that allows the survival of organisms inhabiting historically polluted sites due to the detoxification of redistributed metals. Organisms from two heavy metal mine populations and one population derived from an unpolluted site were used to determine the detoxification activities, antioxidant capacity, and oxidative damage, as well as cellular energy allocation parameters and acetylcholinesterase activity (a biomarker of neurotoxicity). Muscle biomarkers differ between shrews from polluted sites and shrews from the unpolluted location, with the mine animals showing: (1) a decreased energy consumption concomitant with increased energy reserves and total available energy; (2) reduced cholinergic activity, suggesting an impairment of neurotransmission at the neuromuscular junction; (3) an overall decrease in detoxification capacity and enzymatic antioxidant response and a higher level of lipid damage. Also, some of these markers differed between females and males. These changes may have resulted from a decreased detoxifying capacity of the liver and could potentially bring about significant ecological effects for this highly active species. Heavy metal pollution induced physiological changes in Crocidura russula showing that skeletal muscle may serve as a backup sink organ allowing rapid species adaptation and evolution.


Asunto(s)
Metales Pesados , Musarañas , Masculino , Animales , Femenino , Humanos , Musarañas/metabolismo , Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Metales Pesados/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
17.
Pest Manag Sci ; 79(6): 2255-2263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36775861

RESUMEN

BACKGROUND: Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS: A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION: The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.


Asunto(s)
Bacillus thuringiensis , Beauveria , Chironomidae , Insecticidas , Animales , Humanos , Insecticidas/farmacología , Chironomidae/fisiología , Cloruro de Sodio/farmacología , Ecosistema , Insectos , Larva
18.
Sci Total Environ ; 875: 162556, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870489

RESUMEN

Freshwater benthic environments are among the major sinks of microplastics (MPs, < 5 mm) sourced on inland anthropogenic activities. The ecotoxicological effects of MPs on benthic macroinvertebrates have been assessed preferably in collectors, shredders, and filter-feeders, but resulting in insufficient knowledge on the potential trophic transfer and its effects on macroinvertebrates with predator behaviour such as planarians. This work evaluated the behavioural (feeding, locomotion), physiological (regeneration) and biochemical responses (aerobic metabolism, energy reserves, oxidative damage) of the planarian Girardia tigrina after consuming contaminated live prey Chironomus riparius larvae previously exposed to microplastics of polyurethane (PU-MPs; 7-9 µm in size; 375 mg PU-MPs/kg). After the feeding period (3 h), planarians consumed 20 % more contaminated prey than uncontaminated prey, probably related to increased curling/uncurling movements of larvae (that might be more appellative to planarians). Histological analysis revealed planarians' limited intake of PU-MPs, mainly detected near the pharynx. The consumption of contaminated prey (and intake of PU-MPs) did not result in oxidative damage but slightly increased the aerobic metabolism and energy reserves which show that the consumption of more prey was sufficient to cope with the potential adverse effects of internalized MPs. Moreover, no effects were observed in the locomotion of planarians in good agreement with the hypothesis of sufficient energy acquired by the exposed planarians. Despite the previous, it seems that the energy acquired was not allocated for planarians' regeneration since a significant delay in the regeneration of the auricles was observed for planarians feeding on contaminated prey. Therefore, further studies should be performed considering the potential long-term effects (i.e., reproduction/fitness) and the effects of MPs that might result from continuous feeding on contaminated prey, representing a more realistic exposure scenario.


Asunto(s)
Planarias , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Planarias/fisiología , Contaminantes Químicos del Agua/toxicidad , Agua Dulce
19.
Environ Sci Pollut Res Int ; 30(41): 93779-93785, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516699

RESUMEN

Neonicotinoids are highly consumed systemic insecticides that mimic acetylcholine (ACh) with a specific mode of action at the nicotinic acetylcholine receptors (nAChRs). The insecticide Actara® (active ingredient thiamethoxam- TMX) is a commercial formulation widely used for the control of various agricultural pest species. However, negative effects of TMX have been observed in non-target organisms. This work aimed to evaluate the biological effects of the commercial formulation Actara® on the aquatic non-target and non-biting larvae of Chironomus xanthus (Diptera). The lethal (LC50) and sublethal (body length, head capsule width, cumulative emergence, and mean time to emergence-EmT50) effects were determined in two subsequent generations (P and F1). The estimated 48 h LC50 for C. xanthus larvae exposed to Actara® was 73.02 µg TMX/L. By looking at the sublethal effects of Actara on the life cycle parameters of C. xanthus, we determined that none of the concentrations used induced a significantly different response in the organisms, compared to the control treatment (NOEC > 2 µg TMX/L). However, the head capsule width in the parental (P) generation exposed to Actara (≥ 0.9 µg TMX/L) was significantly bigger than the head capsule width of control animals. Overall, our results highlight that, at environmentally relevant concentrations, the commercial formulation Actara® is non-toxic to C. xanthus.


Asunto(s)
Chironomidae , Insecticidas , Animales , Tiametoxam/farmacología , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Larva , Nitrocompuestos/toxicidad
20.
Chemosphere ; 340: 139894, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37607599

RESUMEN

Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 µg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding - after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2-20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.


Asunto(s)
Herbicidas , Pez Cebra , Animales , Agricultura , Biota , Herbicidas/toxicidad , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA