Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem Lett ; 30(12): 127207, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32354566

RESUMEN

A previous publication from our laboratory reported the identification of a new class of 2-(1H-imidazo-2-yl)piperazines as potent T. brucei growth inhibitors as potential treatment for Human African Trypanosomiasis (HAT). This work describes the structure-activity relationship (SAR) around the hit compound 1, which led to the identification of the optimized compound 18, a single digit nanomolar inhibitor (EC50 7 nM), not cytotoxic and with optimal in vivo profile that made it a suitable candidate for efficacy studies in a mouse model mimicking the second stage of disease.


Asunto(s)
Inhibidores de Crecimiento/química , Piperazinas/química , Tripanocidas/química , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inhibidores de Crecimiento/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isomerismo , Morfolinas/química , Piperazinas/farmacología , Quinolinas/química , Relación Estructura-Actividad , Tripanocidas/farmacología
2.
Bioorg Med Chem Lett ; 28(9): 1540-1544, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29615344

RESUMEN

Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.


Asunto(s)
Antimaláricos/farmacología , Catepsinas/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Nitrilos/farmacología , Peptidomiméticos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Catepsinas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 28(23-24): 3689-3692, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30482621

RESUMEN

The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5 nM), is not cytotoxic (HeLa CC50 > 25,000 nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120 nM, P. falciparum EC50 3624 nM).


Asunto(s)
Piperazinas/química , Piperazinas/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Células HeLa , Humanos , Imidazoles/química , Imidazoles/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma brucei brucei/crecimiento & desarrollo , Tripanosomiasis Africana/parasitología
4.
Commun Biol ; 5(1): 547, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668202

RESUMEN

Blocking Plasmodium falciparum human-to-mosquito transmission is essential for malaria elimination, nonetheless drugs killing the pathogenic asexual stages are generally inactive on the parasite transmissible stages, the gametocytes. Due to technical and biological limitations in high throughput screening of non-proliferative stages, the search for gametocyte-killing molecules so far tested one tenth the number of compounds screened on asexual stages. Here we overcome these limitations and rapidly screened around 120,000 compounds, using not purified, bioluminescent mature gametocytes. Orthogonal gametocyte assays, selectivity assays on human cells and asexual parasites, followed by compound clustering, brought to the identification of 84 hits, half of which are gametocyte selective and half with comparable activity against sexual and asexual parasites. We validated seven chemotypes, three of which are, to the best of our knowledge, novel. These molecules are able to inhibit male gametocyte exflagellation and block parasite transmission through the Anopheles mosquito vector in a standard membrane feeding assay. This work shows that interrogating a wide and diverse chemical space, with a streamlined gametocyte HTS and hit validation funnel, holds promise for the identification of dual stage and gametocyte-selective compounds to be developed into new generation of transmission blocking drugs for malaria elimination.


Asunto(s)
Anopheles , Malaria , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Plasmodium falciparum
5.
J Virol ; 84(1): 34-43, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828610

RESUMEN

Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.


Asunto(s)
Hepacivirus/fisiología , Receptores Virales , Receptores Depuradores de Clase B/fisiología , Internalización del Virus , Animales , Anticuerpos Monoclonales , Células Cultivadas , Hepacivirus/inmunología , Hepatitis C/inmunología , Humanos , Cinética , Lipoproteínas HDL/metabolismo , Ratones , Receptores Depuradores de Clase B/metabolismo , Especificidad de la Especie
6.
J Virol ; 83(18): 9079-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19587042

RESUMEN

Naturally occurring hepatitis C virus (HCV) subgenomic RNAs have been found in several HCV patients. These subgenomic deletion mutants, mostly lacking the genes encoding envelope glycoproteins, were found in both liver and serum, where their relatively high abundance suggests that they are capable of autonomous replication and can be packaged and secreted in viral particles, presumably harboring the envelope proteins from wild type virus coinfecting the same cell. We recapitulated some of these natural subgenomic deletions in the context of the isolate JFH-1 and confirmed these hypotheses in vitro. In Huh-7.5 cells, these deletion-containing genomes show robust replication and can be efficiently trans-packaged and infect naïve Huh-7.5 cells when cotransfected with the full-length wild-type J6/JFH genome. The genome structure of these natural subgenomic deletion mutants was dissected, and the maintenance of both core and NS2 regions was proven to be significant for efficient replication and trans-packaging. To further explore the requirements needed to achieve trans-complementation, we provided different combinations of structural proteins in trans. Optimal trans-complementation was obtained when fragments of the polyprotein encompassing core to p7 or E1 to NS2 were expressed. Finally, we generated a stable helper cell line, constitutively expressing the structural proteins from core to p7, which efficiently supports trans-complementation of a subgenomic deletion encompassing amino acids 284 to 732. This cell line can produce and be infected by defective particles, thus representing a powerful tool to investigate the life cycle and relevance of natural HCV subgenomic deletion mutants in vivo.


Asunto(s)
Hepacivirus/genética , Eliminación de Secuencia , Virión , Ensamble de Virus , Línea Celular , Genoma Viral , Humanos , ARN Viral , Proteínas Estructurales Virales/genética , Replicación Viral
7.
ACS Med Chem Lett ; 7(5): 454-9, 2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27190592

RESUMEN

The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.

8.
J Virol ; 81(15): 8063-71, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17507483

RESUMEN

The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Hepacivirus/inmunología , Hepatitis C , Lipoproteínas HDL/metabolismo , Receptores Depuradores de Clase B/inmunología , Afinidad de Anticuerpos , Línea Celular , Colesterol/metabolismo , Hepatitis C/inmunología , Hepatitis C/prevención & control , Humanos , Receptores Depuradores de Clase B/genética
9.
J Gen Virol ; 85(Pt 7): 1867-1875, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15218171

RESUMEN

An efficient model is currently used to study hepatitis C virus (HCV) replication in cell culture. It involves transfection in Huh7, a hepatoma-derived cell line, of an antibiotic (neomycin) selectable HCV subgenomic replicon encoding the non-structural (NS) proteins from NS3 to NS5B. However, strong and sustained replication is achieved only on the appearance of adaptive mutations in viral proteins. The most effective of these adaptive mutations are concentrated mainly in NS5A, not only into the original Con1 but also in the recently established HCV-BK and HCV-H77 isolate-derived replicons. This suggests that the expression of wild-type (wt) NS5A may not allow efficient HCV RNA replication in cell culture. With the use of a beta-lactamase reporter gene as a marker for HCV replication and TaqMan RNA analysis, the replication of different HCV replicons in cotransfection experiments was investigated. Comparing wt with NS5A-adapted replicons, the strong evidence accumulated showed that the expression of wt NS5A was actually able to inhibit the replication of NS5A-adapted replicons. This feature was characterized as a dominant negative effect. Interestingly, an NS5B (R2884G)-adapted replicon, containing a wt NS5A, was dominant negative on an NS5A-adapted replicon but was not inhibited by the original Con1 replicon. In conclusion, these studies revealed that the original wt Con1 replicon is not only incompetent for replication in cell culture, but is also able to interfere with NS5A-adapted replicons.


Asunto(s)
Hepacivirus/genética , ARN Viral/genética , Replicón/genética , Proteínas no Estructurales Virales/genética , Sustitución de Aminoácidos , Carcinoma Hepatocelular , Línea Celular Tumoral , Genes Reporteros , Genoma Viral , Hepacivirus/fisiología , Humanos , Neoplasias Hepáticas , Mutagénesis Sitio-Dirigida , Transfección , Replicación Viral/genética
10.
J Virol ; 76(15): 7736-46, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12097587

RESUMEN

Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA.


Asunto(s)
Flaviviridae/fisiología , Genoma Viral , Replicón/genética , Replicación Viral , Secuencia de Aminoácidos , Animales , Antivirales/farmacología , Secuencia de Bases , Carcinoma Hepatocelular , Línea Celular , Células Clonales/virología , Flaviviridae/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Replicón/efectos de los fármacos , Saguinus , Análisis de Secuencia de ADN , Transfección , Células Tumorales Cultivadas , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA