Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Annu Rev Biochem ; 85: 103-32, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27023846

RESUMEN

Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/ultraestructura , Biosíntesis de Proteínas , Subunidades Ribosómicas/ultraestructura , Animales , Antibacterianos/farmacología , Evolución Biológica , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , ADN Mitocondrial/metabolismo , Mamíferos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Nature ; 609(7928): 835-845, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045294

RESUMEN

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Asunto(s)
Ficobilisomas , Luz Solar , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferencia de Energía/efectos de la radiación , Fotosíntesis/efectos de la radiación , Ficobilisomas/química , Ficobilisomas/metabolismo , Ficobilisomas/efectos de la radiación , Synechocystis/metabolismo , Synechocystis/efectos de la radiación
3.
Nature ; 586(7829): 452-456, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814905

RESUMEN

Most quality control pathways target misfolded proteins to prevent toxic aggregation and neurodegeneration1. Dimerization quality control further improves proteostasis by eliminating complexes of aberrant composition2, but how it detects incorrect subunits remains unknown. Here we provide structural insight into target selection by SCF-FBXL17, a dimerization-quality-control E3 ligase that ubiquitylates and helps to degrade inactive heterodimers of BTB proteins while sparing functional homodimers. We find that SCF-FBXL17 disrupts aberrant BTB dimers that fail to stabilize an intermolecular ß-sheet around a highly divergent ß-strand of the BTB domain. Complex dissociation allows SCF-FBXL17 to wrap around a single BTB domain, resulting in robust ubiquitylation. SCF-FBXL17 therefore probes both shape and complementarity of BTB domains, a mechanism that is well suited to establish quality control of complex composition for recurrent interaction modules.


Asunto(s)
Dominio BTB-POZ , Proteínas F-Box/metabolismo , Multimerización de Proteína , Factor de Células Madre/metabolismo , Dominio BTB-POZ/genética , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estabilidad Proteica , Ubiquitinación
4.
Nucleic Acids Res ; 52(9): 5285-5300, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38366771

RESUMEN

The signal recognition particle (SRP) is a critical component in protein sorting pathways in all domains of life. Human SRP contains six proteins bound to the 7S RNA and their structures and functions have been mostly elucidated. The SRP68/72 dimer is the largest SRP component and is essential for SRP function. Although the structures of the SRP68/72 RNA binding and dimerization domains have been previously reported, the structure and function of large portions of the SRP68/72 dimer remain unknown. Here, we analyse full-length SRP68/72 using cryo-EM and report that SRP68/72 depend on each other for stability and form an extended dimerization domain. This newly observed dimerization domain is both a protein- and RNA-binding domain. Comparative analysis with current structural models suggests that this dimerization domain undergoes dramatic translocation upon SRP docking onto SRP receptor and eventually comes close to the Alu domain. We propose that the SRP68/72 dimerization domain functions by binding and detaching the Alu domain and SRP9/14 from the ribosomal surface, thus releasing elongation arrest upon docking onto the ER membrane.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Multimerización de Proteína , Partícula de Reconocimiento de Señal , Humanos , Sitios de Unión , Unión Proteica , Dominios Proteicos , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34996871

RESUMEN

Microtubules (MTs) are polymers of αß-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Humanos , Hidrólisis , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Proteínas Recombinantes , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
6.
Nature ; 557(7704): 190-195, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695869

RESUMEN

The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.


Asunto(s)
Microscopía por Crioelectrón , Telomerasa/metabolismo , Telomerasa/ultraestructura , Dominio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutación , Dominios Proteicos , ARN/química , ARN/metabolismo , ARN/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Especificidad por Sustrato , Telomerasa/química , Telomerasa/genética
7.
Nature ; 549(7672): 414-417, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28902838

RESUMEN

Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Iniciación de la Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 117(37): 22849-22857, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32855301

RESUMEN

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


Asunto(s)
Quinasas Ciclina-Dependientes/ultraestructura , Ciclo Celular , División Celular , Microscopía por Crioelectrón/métodos , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
Biophys J ; 120(4): 677-686, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33476598

RESUMEN

The human CDK-activating kinase (CAK), composed of CDK7, cyclin H, and MAT1, is involved in the control of transcription initiation and the cell cycle. Because of these activities, it has been identified as a promising target for cancer chemotherapy. A number of CDK7 inhibitors have entered clinical trials, among them ICEC0942 (also known as CT7001). Structural information can aid in improving the affinity and specificity of such drugs or drug candidates, reducing side effects in patients. Here, we have determined the structure of the human CAK in complex with ICEC0942 at 2.5 Å-resolution using cryogenic electron microscopy. Our structure reveals conformational differences of ICEC0942 compared with previous X-ray crystal structures of the CDK2-bound complex, and highlights the critical ability of cryogenic electron microscopy to resolve structures of drug-bound protein complexes without the need to crystalize the protein target.


Asunto(s)
Quinasas Ciclina-Dependientes , Ciclo Celular , División Celular , Quinasa 2 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , Quinasa Activadora de Quinasas Ciclina-Dependientes
10.
Nature ; 505(7484): 515-9, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24362565

RESUMEN

Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.


Asunto(s)
Mitocondrias/química , Subunidades Ribosómicas/química , Animales , Bovinos , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Ribosómico 16S/química , ARN Ribosómico 16S/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/ultraestructura , Porcinos
11.
Nature ; 515(7526): 283-6, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25271403

RESUMEN

Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.


Asunto(s)
Mitocondrias/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/ultraestructura , Animales , Reactivos de Enlaces Cruzados , Microscopía por Crioelectrón , Espectrometría de Masas , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Molecular , Peptidil Transferasas/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Subunidades Ribosómicas Grandes/genética , Sus scrofa/genética
12.
Subcell Biochem ; 93: 143-192, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31939151

RESUMEN

Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.


Asunto(s)
Eucariontes/química , Células Eucariotas/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIIH/metabolismo , Iniciación de la Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo
13.
RNA ; 22(11): 1643-1662, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27875256

RESUMEN

Eukaryotic ribosomes, the protein-producing factories of the cell, are composed of four ribosomal RNA molecules and roughly 80 proteins. Their biogenesis is a complex process that involves more than 200 biogenesis factors that facilitate the production, modification, and assembly of ribosomal components and the structural transitions along the maturation pathways of the pre-ribosomal particles. Here, I review recent structural and mechanistic insights into the biogenesis of the large ribosomal subunit that were furthered by cryo-electron microscopy of natively purified pre-60S particles and in vitro reconstituted ribosome assembly factor complexes. Combined with biochemical, genetic, and previous structural data, these structures have provided detailed insights into the assembly and maturation of the central protuberance of the 60S subunit, the network of biogenesis factors near the ribosomal tunnel exit, and the functional activation of the large ribosomal subunit during cytoplasmic maturation.


Asunto(s)
Microscopía por Crioelectrón/métodos , Ribosomas , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN de Hongos/genética , ARN Ribosómico 5S/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nucleic Acids Res ; 42(8): 5191-201, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569352

RESUMEN

Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Ribosomas/enzimología , Arginino-ARNt Ligasa/metabolismo , Genoma Arqueal , Methanobacteriaceae/genética , Proteínas Ribosómicas/metabolismo , Serina-ARNt Ligasa/metabolismo
15.
Structure ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38565138

RESUMEN

The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.

16.
Sci Adv ; 10(14): eadk7535, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578996

RESUMEN

Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.


Asunto(s)
Cianobacterias , Ficobilisomas , Ficobilisomas/química , Ficobilisomas/metabolismo , Proteínas Bacterianas/metabolismo , Cantaxantina/metabolismo , Microscopía por Crioelectrón , Cianobacterias/metabolismo
17.
Nat Commun ; 15(1): 2265, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480681

RESUMEN

Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.


Asunto(s)
Quinasa Activadora de Quinasas Ciclina-Dependientes , Diseño de Fármacos , Humanos , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/química , Ciclo Celular
18.
Adv Mater ; 35(23): e2212065, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932732

RESUMEN

Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity-based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end-cap structures, can be derived from a glycyl radical enzyme-associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC-based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC-based structures.


Asunto(s)
Bacterias , Proteínas Bacterianas , Bacterias/metabolismo , Proteínas Bacterianas/química , Biotecnología , Orgánulos/metabolismo
19.
Curr Opin Struct Biol ; 61: 17-24, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31751889

RESUMEN

TFIID is a large multiprotein assembly that serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II (Pol II). TFIID is involved in the recognition of the core promoter sequences and neighboring chromatin marks, and can interact with gene-specific activators and repressors. In order to obtain a better molecular and mechanistic understanding of the function of TFIID, its structure has been pursued for many years. However, the scarcity of TFIID and its highly flexible nature have made this pursuit very challenging. Recent breakthroughs, largely due to methodological advances in cryo-electron microscopy, have finally described the structure of this complex, both alone and engaged with core promoter DNA, revealing the functional significance of its conformational complexity in the process of core promoter recognition and initiation of Pol II transcription. Here, we review these recent structural insights and discuss their implications for our understanding of eukaryotic transcription initiation.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Regiones Promotoras Genéticas , Conformación Proteica , Factor de Transcripción TFIID/química , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo
20.
Curr Opin Struct Biol ; 59: 188-194, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600675

RESUMEN

Eukaryotic transcription factor IIH (TFIIH) is a 500 kDa-multiprotein complex that harbors two SF2-family DNA-dependent ATPase/helicase subunits and the kinase activity of Cyclin-dependent kinase 7. TFIIH serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II and plays an important role in nucleotide excision DNA repair. Aiming to understand the molecular mechanisms of its function and regulation in two key cellular pathways, the high-resolution structure of TFIIH has been pursued for decades. Recent breakthroughs, largely enabled by methodological advances in cryo-electron microscopy, have finally revealed the structure of TFIIH and its interactions in the context of the Pol II-pre-initiation complex, and provide a first glimpse of a TFIIH-containing assembly in DNA repair. Here, we review and discuss these recent structural insights and their functional implications.


Asunto(s)
Microscopía por Crioelectrón , Relación Estructura-Actividad Cuantitativa , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/ultraestructura , ADN/química , ADN/metabolismo , Reparación del ADN , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA