RESUMEN
The ability to design efficient enzymes from scratch would have a profound effect on chemistry, biotechnology and medicine. Rapid progress in protein engineering over the past decade makes us optimistic that this ambition is within reach. The development of artificial enzymes containing metal cofactors and noncanonical organocatalytic groups shows how protein structure can be optimized to harness the reactivity of nonproteinogenic elements. In parallel, computational methods have been used to design protein catalysts for diverse reactions on the basis of fundamental principles of transition state stabilization. Although the activities of designed catalysts have been quite low, extensive laboratory evolution has been used to generate efficient enzymes. Structural analysis of these systems has revealed the high degree of precision that will be needed to design catalysts with greater activity. To this end, emerging protein design methods, including deep learning, hold particular promise for improving model accuracy. Here we take stock of key developments in the field and highlight new opportunities for innovation that should allow us to transition beyond the current state of the art and enable the robust design of biocatalysts to address societal needs.
Asunto(s)
Biocatálisis , Biotecnología , Ingeniería de Proteínas , Proteínas , Biotecnología/métodos , Biotecnología/tendencias , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/tendencias , Proteínas/química , Proteínas/metabolismoRESUMEN
The ability to program new modes of catalysis into proteins would allow the development of enzyme families with functions beyond those found in nature. To this end, genetic code expansion methodology holds particular promise, as it allows the site-selective introduction of new functional elements into proteins as noncanonical amino acid side chains1-4. Here we exploit an expanded genetic code to develop a photoenzyme that operates by means of triplet energy transfer (EnT) catalysis, a versatile mode of reactivity in organic synthesis that is not accessible to biocatalysis at present5-12. Installation of a genetically encoded photosensitizer into the beta-propeller scaffold of DA_20_00 (ref. 13) converts a de novo Diels-Alderase into a photoenzyme for [2+2] cycloadditions (EnT1.0). Subsequent development and implementation of a platform for photoenzyme evolution afforded an efficient and enantioselective enzyme (EnT1.3, up to 99% enantiomeric excess (e.e.)) that can promote intramolecular and bimolecular cycloadditions, including transformations that have proved challenging to achieve selectively with small-molecule catalysts. EnT1.3 performs >300 turnovers and, in contrast to small-molecule photocatalysts, can operate effectively under aerobic conditions and at ambient temperatures. An X-ray crystal structure of an EnT1.3-product complex shows how multiple functional components work in synergy to promote efficient and selective photocatalysis. This study opens up a wealth of new excited-state chemistry in protein active sites and establishes the framework for developing a new generation of enantioselective photocatalysts.
Asunto(s)
Biocatálisis , Reacción de Cicloadición , Enzimas , Procesos Fotoquímicos , Aminoácidos/química , Aminoácidos/metabolismo , Reacción de Cicloadición/métodos , Estereoisomerismo , Biocatálisis/efectos de la radiación , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Enzimas/efectos de la radiación , Cristalografía por Rayos X , Dominio Catalítico , Código Genético , Diseño de FármacosRESUMEN
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.
Asunto(s)
Mutación , Trastornos Mieloproliferativos , Neoplasias , Adulto , Preescolar , Células Clonales/patología , Humanos , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Filogenia , Proteína Fosfatasa 2C , Secuenciación Completa del GenomaRESUMEN
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Asunto(s)
Linfocitos , Mutación , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Diferenciación Celular , Proliferación Celular , Microambiente Celular , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , Memoria Inmunológica/genética , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Neoplasias/genética , Neoplasias/patologíaRESUMEN
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
Asunto(s)
Envejecimiento , Hematopoyesis Clonal , Células Clonales , Longevidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Niño , Preescolar , Hematopoyesis Clonal/genética , Células Clonales/citología , Femenino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/citología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Adulto JovenRESUMEN
ABSTRACT: Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols that rely on culture. However, the kinetics and mechanisms through which this occurs remain incompletely characterized. In this study, through time-resolved single-cell RNA sequencing, matched in vivo functional analysis, and the use of a reversible in vitro system of early G1 arrest, we defined the sequence of transcriptional and functional events that occur during the first ex vivo division of human LT-HSCs. We demonstrated that the sharpest loss in LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limit the global variability in gene expression, and transiently upregulate gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programs in culture. However, contrary to the current assumptions, we demonstrated that the loss of HSC function ex vivo is independent of cell cycle progression. Finally, we showed that targeting LT-HSC adaptation to culture by inhibiting the early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrated that controlling early LT-HSC adaptation to ex vivo culture, for example, via JAK inhibition, is critically important to improve HSC gene therapy and expansion protocols.
Asunto(s)
Ciclo Celular , Células Madre Hematopoyéticas , Humanos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Cultivadas , Transducción de Señal , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Adaptación FisiológicaRESUMEN
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Asunto(s)
Aminoácidos , Biocatálisis , Aminoácidos/metabolismo , Aminoácidos/química , Aminoácidos/genética , Código Genético , Ingeniería de Proteínas , Enzimas/metabolismo , Enzimas/genética , Enzimas/químicaRESUMEN
Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in â¼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.
Asunto(s)
Aberraciones Cromosómicas , Neoplasias/genética , Neoplasias/patología , Neoplasias Óseas/genética , Línea Celular Tumoral , Pintura Cromosómica , Femenino , Reordenamiento Génico , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Persona de Mediana EdadRESUMEN
Polycythemia vera (PV) is a myeloproliferative neoplasm driven by activating mutations in JAK2 that result in unrestrained erythrocyte production, increasing patients' hematocrit and hemoglobin concentrations, placing them at risk of life-threatening thrombotic events. Our genome-wide association study of 440 PV cases and 403 351 controls using UK Biobank data showed that single nucleotide polymorphisms in HFE known to cause hemochromatosis are highly associated with PV diagnosis, linking iron regulation to PV. Analysis of the FinnGen dataset independently confirmed overrepresentation of homozygous HFE variants in patients with PV. HFE influences the expression of hepcidin, the master regulator of systemic iron homeostasis. Through genetic dissection of mouse models of PV, we show that the PV erythroid phenotype is directly linked to hepcidin expression: endogenous hepcidin upregulation alleviates erythroid disease whereas hepcidin ablation worsens it. Furthermore, we demonstrate that in PV, hepcidin is not regulated by expanded erythropoiesis but is likely governed by inflammatory cytokines signaling via GP130-coupled receptors. These findings have important implications for understanding the pathophysiology of PV and offer new therapeutic strategies for this disease.
Asunto(s)
Policitemia Vera , Animales , Ratones , Policitemia Vera/genética , Policitemia Vera/complicaciones , Hepcidinas/genética , Estudio de Asociación del Genoma Completo , Hierro/metabolismo , Fenotipo , HomeostasisRESUMEN
The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.
Asunto(s)
Evolución Molecular Dirigida , Hidrolasas/genética , Hidrolasas/metabolismo , Ingeniería de Proteínas , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/metabolismo , Biocatálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Ésteres/metabolismo , Código Genético , Hidrolasas/química , Hidrólisis , Metilhistidinas/metabolismo , Modelos Moleculares , Mutagénesis , Mutación , Pyrococcus horikoshii/enzimología , Pyrococcus horikoshii/genética , Especificidad por Sustrato/genéticaRESUMEN
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Asunto(s)
Ingeniería de Proteínas , Biocatálisis , CatálisisRESUMEN
The engineering of natural enzymes has led to the availability of a broad range of biocatalysts that can be used for the sustainable manufacturing of a variety of chemicals and pharmaceuticals. However, for many important chemical transformations there are no known enzymes that can serve as starting templates for biocatalyst development. These limitations have fuelled efforts to build entirely new catalytic sites into proteins in order to generate enzymes with functions beyond those found in Nature. This bottom-up approach to enzyme development can also reveal new fundamental insights into the molecular origins of efficient protein catalysis. In this tutorial review, we will survey the different strategies that have been explored for designing new protein catalysts. These methods will be illustrated through key selected examples, which demonstrate how highly proficient and selective biocatalysts can be developed through experimental protein engineering and/or computational design. Given the rapid pace of development in the field, we are optimistic that designer enzymes will begin to play an increasingly prominent role as industrial biocatalysts in the coming years.
Asunto(s)
Ingeniería de Proteínas , Proteínas , Proteínas/metabolismo , Catálisis , Enzimas/metabolismo , BiocatálisisRESUMEN
Adult hematopoietic stem cells (HSCs) are predominantly quiescent and can be activated in response to acute stress such as infection or cytotoxic insults. STAT1 is a pivotal downstream mediator of interferon (IFN) signaling and is required for IFN-induced HSC proliferation, but little is known about the role of STAT1 in regulating homeostatic hematopoietic stem/progenitor cells (HSPCs). Here, we show that loss of STAT1 altered the steady state HSPC landscape, impaired HSC function in transplantation assays, delayed blood cell regeneration following myeloablation, and disrupted molecular programs that protect HSCs, including control of quiescence. Our results also reveal STAT1-dependent functional HSC heterogeneity. A previously unrecognized subset of homeostatic HSCs with elevated major histocompatibility complex class II (MHCII) expression (MHCIIhi) displayed molecular features of reduced cycling and apoptosis and was refractory to 5-fluorouracil-induced myeloablation. Conversely, MHCIIlo HSCs displayed increased megakaryocytic potential and were preferentially expanded in CALR mutant mice with thrombocytosis. Similar to mice, high MHCII expression is a feature of human HSCs residing in a deeper quiescent state. Our results therefore position STAT1 at the interface of stem cell heterogeneity and the interplay between stem cells and the adaptive immune system, areas of broad interest in the wider stem cell field.
Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Factor de Transcripción STAT1 , Animales , Proliferación Celular , Fluorouracilo/farmacología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferones , Megacariocitos/metabolismo , Ratones , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismoRESUMEN
Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of â¼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.
Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Metilhistidinas/metabolismo , Metilhistidinas/química , Lisina/química , Lisina/metabolismo , Lisina/análogos & derivados , Dominio Catalítico , Histidina/química , Histidina/metabolismo , Histidina/análogos & derivadosRESUMEN
Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000-200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans.
Asunto(s)
Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Linaje de la Célula/genética , Análisis Mutacional de ADN , Mutación , Células Madre Adultas/citología , Teorema de Bayes , Recuento de Células , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Desarrollo Embrionario/genética , Genoma Humano/genética , Granulocitos/citología , Granulocitos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Factores de TiempoRESUMEN
The catalytic versatility of pentacoordinated iron is highlighted by the broad range of natural and engineered activities of heme enzymes such as cytochrome P450s, which position a porphyrin cofactor coordinating a central iron atom below an open substrate binding pocket. This catalytic prowess has inspired efforts to design de novo helical bundle scaffolds that bind porphyrin cofactors. However, such designs lack the large open substrate binding pocket of P450s, and hence, the range of chemical transformations accessible is limited. Here, with the goal of combining the advantages of the P450 catalytic site geometry with the almost unlimited customizability of de novo protein design, we design a high-affinity heme-binding protein, dnHEM1, with an axial histidine ligand, a vacant coordination site for generating reactive intermediates, and a tunable distal pocket for substrate binding. A 1.6 Å X-ray crystal structure of dnHEM1 reveals excellent agreement to the design model with key features programmed as intended. The incorporation of distal pocket substitutions converted dnHEM1 into a proficient peroxidase with a stable neutral ferryl intermediate. In parallel, dnHEM1 was redesigned to generate enantiocomplementary carbene transferases for styrene cyclopropanation (up to 93% isolated yield, 5000 turnovers, 97:3 e.r.) by reconfiguring the distal pocket to accommodate calculated transition state models. Our approach now enables the custom design of enzymes containing cofactors adjacent to binding pockets with an almost unlimited variety of shapes and functionalities.
Asunto(s)
Hemo , Porfirinas , Hemo/química , Metales , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro/química , Porfirinas/química , Sitios de UniónRESUMEN
Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.
Asunto(s)
Cobre , Histidina , Oxigenasas de Función Mixta , Estrés Oxidativo , CatálisisRESUMEN
Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-differential changes, we performed single cell RNA-sequencing on one EBV-infected culture that resulted in alignment with many EBV transcripts. EBV transcripts represented a small portion of the total transcriptome (~0.17%). All cell types in the pseudostratified epithelium had detectable EBV transcripts with suprabasal cells showing the highest number of reads aligning to many EBV genes. Several restriction factors (IRF1, MX1, STAT1, C18orf25) known to limit lytic infection were expressed at lower levels in the lytic subcluster. A third of the differentially-expressed genes in NPC tumors compared to an uninfected pseudostratified ALI culture overlapped with the differentially-expressed genes in the latent subcluster. A third of these commonly perturbed genes were specific to EBV infection and changed in the same direction. Collectively, these findings suggest that the pseudostratified epithelium could harbor EBV infection and that the pseudostratified infection model mirrors many of the transcriptional changes imposed by EBV infection in NPC.
Asunto(s)
Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Interacciones Huésped-Patógeno/inmunología , Neoplasias Nasofaríngeas/virología , Carcinoma/metabolismo , Carcinoma/virología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Epitelio/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Humanos , Carcinoma Nasofaríngeo/virología , ARN Viral/genéticaRESUMEN
BACKGROUND AND AIMS: Chloride (Cl- ) channels in the apical membrane of biliary epithelial cells (BECs), also known as cholangiocytes, provide the driving force for biliary secretion. Although two Cl- channels have been identified on a molecular basis, the Cystic Fibrosis Transmembrane Conductance Regulator and Transmembrane Member 16A, a third Cl- channel with unique biophysical properties has been described. Leucine-Rich Repeat-Containing Protein 8, subfamily A (LRRC8A) is a newly identified protein capable of transporting Cl- in other epithelium in response to cell swelling. The aim of the present study was to determine if LRRC8A represents the volume-regulated anion channel in mouse BECs. APPROACH AND RESULTS: Studies were performed in mouse small (MSC) and large (MLC) cholangiocytes. Membrane Cl- currents were measured by whole-cell patch-clamp techniques and cell volume measurements were performed by calcein-AM fluorescence. Exposure of either MSC or MLC to hypotonicity (190 mOsm) rapidly increased cell volume and activated Cl- currents. Currents exhibited outward rectification, time-dependent inactivation at positive membrane potentials, and reversal potential at 0 mV (ECl ). Removal of extracellular Cl- or specific pharmacological inhibition of LRRC8A abolished currents. LRRC8A was detected in both MSC and MLC by reverse transcription polymerase chain reaction and confirmed by western blot. Transfection with LRRC8A small interfering RNA decreased protein levels by >70% and abolished volume-stimulated Cl- currents. CONCLUSION: These results demonstrate that LRRC8A is functionally present in mouse BECs, contributes to volume-activated Cl- secretion, and, therefore, may be a target to modulate bile formation in the treatment of cholestatic liver disorders.
Asunto(s)
Canales de Cloruro , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Ratones , Animales , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Leucina , Proteínas Repetidas Ricas en Leucina , ARN Interferente Pequeño/metabolismo , Células Epiteliales/metabolismo , Proteínas de la Membrana/genéticaRESUMEN
In the wake of the Covid-19 pandemic, it has become clear that global access to efficacious antiviral drugs will be critical to combat future outbreaks of SARS-CoV-2 or related viruses. The orally available SARS-CoV-2 main protease inhibitor nirmatrelvir has proven an effective treatment option for Covid-19, especially in compromised patients. We report a new synthesis of nirmatrelvir featuring a highly enantioselective biocatalytic desymmetrization (>99% ee) and a highly diastereoselective multicomponent reaction (>25:1 dr) as the key steps. Our route avoids the use of transition metals and peptide coupling reagents, resulting in an overall highly efficient and atom-economic process.