Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(22): 4340-4351, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28973664

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with increased risk for developing Parkinson's disease (PD). Previously, we found that LRRK2 G2019S mutation carriers have increased mitochondrial DNA (mtDNA) damage and after zinc finger nuclease-mediated gene mutation correction, mtDNA damage was no longer detectable. While the mtDNA damage phenotype can be unambiguously attributed to the LRRK2 G2019S mutation, the underlying mechanism(s) is unknown. Here, we examine the role of LRRK2 kinase function in LRRK2 G2019S-mediated mtDNA damage, using both genetic and pharmacological approaches in cultured neurons and PD patient-derived cells. Expression of LRRK2 G2019S induced mtDNA damage in primary rat midbrain neurons, but not in cortical neuronal cultures. In contrast, the expression of LRRK2 wild type or LRRK2 D1994A mutant (kinase dead) had no effect on mtDNA damage in either midbrain or cortical neuronal cultures. In addition, human LRRK2 G2019S patient-derived lymphoblastoid cell lines (LCL) demonstrated increased mtDNA damage relative to age-matched controls. Importantly, treatment of LRRK2 G2019S expressing midbrain neurons or patient-derived LRRK2 G2019S LCLs with the LRRK2 kinase inhibitor GNE-7915, either prevented or restored mtDNA damage to control levels. These findings support the hypothesis that LRRK2 G2019S-induced mtDNA damage is LRRK2 kinase activity dependent, uncovering a novel pathological role for this kinase. Blocking or reversing mtDNA damage via LRRK2 kinase inhibition or other therapeutic approaches may be useful to slow PD-associated pathology.


Asunto(s)
Daño del ADN , ADN Mitocondrial/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , ADN Mitocondrial/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Persona de Mediana Edad , Mitocondrias/metabolismo , Morfolinas/farmacología , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/enzimología , Polimorfismo de Nucleótido Simple , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley
2.
Neurobiol Dis ; 70: 214-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24981012

RESUMEN

DNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in vitro models of PD, using a newly adapted histochemical assay for abasic sites and a quantitative polymerase chain reaction (QPCR)-based assay. We identified the molecular identity of mtDNA damage to be apurinic/apyrimidinic (abasic) sites in substantia nigra dopamine neurons, but not in cortical neurons from postmortem PD specimens. To model the systemic mitochondrial impairment of PD, rats were exposed to the pesticide rotenone. After rotenone treatment that does not cause neurodegeneration, abasic sites were visualized in nigral neurons, but not in cortex. Using a QPCR-based assay, a single rotenone dose induced mtDNA damage in midbrain neurons, but not in cortical neurons; similar results were obtained in vitro in cultured neurons. Importantly, these results indicate that mtDNA damage is detectable prior to any signs of degeneration - and is produced selectively in midbrain neurons under conditions of mitochondrial impairment. The selective vulnerability of midbrain neurons to mtDNA damage was not due to differential effects of rotenone on complex I since rotenone suppressed respiration equally in midbrain and cortical neurons. However, in response to complex I inhibition, midbrain neurons produced more mitochondrial H2O2 than cortical neurons. We report selective mtDNA damage as a molecular marker of vulnerable nigral neurons in PD and suggest that this may result from intrinsic differences in how these neurons respond to complex I defects. Further, the persistence of abasic sites suggests an ineffective base excision repair response in PD.


Asunto(s)
Daño del ADN , ADN Mitocondrial , Neuronas Dopaminérgicas/fisiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/fisiopatología , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores , Células Cultivadas , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Complejo I de Transporte de Electrón/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas Endogámicas Lew , Rotenona , Sustancia Negra/patología
3.
Nat Med ; 5(10): 1194-8, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10502825

RESUMEN

Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats coding for glutamine in the HD gene product huntingtin. Although HD symptoms reflect preferential neuronal death in specific brain regions, huntingtin is expressed in almost all tissues, so abnormalities outside the brain might be expected. Although involvement of nuclei and mitochondria in HD pathophysiology has been suggested, specific intracellular defects that might elicit cell death have been unclear. Mitochondria dysfunction is reported in HD brains; mitochondria are organelles that regulates apoptotic cell death. We now report that lymphoblasts derived from HD patients showed increased stress-induced apoptotic cell death associated with caspase-3 activation. When subjected to stress, HD lymphoblasts also manifested a considerable increase in mitochondrial depolarization correlated with increased glutamine repeats.


Asunto(s)
Apoptosis , Células Madre Hematopoyéticas/patología , Enfermedad de Huntington/genética , Linfocitos/patología , Mitocondrias/fisiología , Repeticiones de Trinucleótidos , Adolescente , Adulto , Caspasa 3 , Caspasas/metabolismo , Cianuros/farmacología , Activación Enzimática , Glutamina/genética , Humanos , Enfermedad de Huntington/etiología , Estaurosporina/farmacología
4.
Science ; 241(4868): 981-3, 1988 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-2841762

RESUMEN

N-Methyl-D-aspartate (NMDA), phencyclidine (PCP), and quisqualate receptor binding were compared to benzodiazepine, gamma-aminobutyric acid (GABA), and muscarinic cholinergic receptor binding in the putamen and cerebral cortex of individuals with Huntington's disease (HD). NMDA receptor binding was reduced by 93 percent in putamen from HD brains compared to binding in normal brains. Quisqualate and PCP receptor binding were reduced by 67 percent, and the binding to other receptors was reduced by 55 percent or less. Binding to these receptors in the cerebral cortex was unchanged in HD brains. The results support the hypothesis that NMDA receptor-mediated neurotoxicity plays a role in the pathophysiology of Huntington's disease.


Asunto(s)
Enfermedad de Huntington/metabolismo , Putamen/metabolismo , Receptores de Neurotransmisores/análisis , Corteza Cerebral/análisis , Corteza Cerebral/metabolismo , Humanos , Putamen/análisis , Receptores AMPA , Receptores de Droga/análisis , Receptores de Droga/metabolismo , Receptores de GABA-A/análisis , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/análisis , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato , Receptores de Neurotransmisores/metabolismo , Receptores de Fenciclidina
5.
Science ; 227(4693): 1496-9, 1985 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-2858129

RESUMEN

Brain sections from patients who had died with senile dementia of the Alzheimer's type (SDAT), Huntington's disease (HD), or no neurologic disease were studied by autoradiography to measure sodium-independent L-[3H]glutamate binding. In brain sections from SDAT patients, glutamate binding was normal in the caudate, putamen, and claustrum but was lower than normal in the cortex. The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site. No significant changes in cortical binding of other ligands were observed. In brains from Huntington's disease patients, glutamate binding was lower in the caudate and putamen than in the same regions of brains from control and SDAT patients but was normal in the cortex. It is possible that development of positron-emitting probes for glutamate receptors may permit diagnosis of SDAT in vivo by means of positron emission tomographic scanning.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Glutamatos/metabolismo , Enfermedad de Huntington/metabolismo , Receptores de Neurotransmisores/metabolismo , Enfermedad de Alzheimer/enzimología , Autorradiografía , Sitios de Unión , Encéfalo/enzimología , Núcleo Caudado/metabolismo , Corteza Cerebral/metabolismo , Colina O-Acetiltransferasa/metabolismo , Ácido Glutámico , Humanos , Enfermedad de Huntington/enzimología , Putamen/metabolismo , Receptores de Glutamato
6.
Neuroscience ; 152(1): 198-207, 2008 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-18191903

RESUMEN

Many mechanisms of neurodegeneration have been implicated in Parkinson's disease, but which ones are most important and potential interactions among them are unclear. To provide a broader perspective on the parkinsonian neurodegenerative process, we have performed a global analysis of gene expression changes caused by chronic, low-level exposure of neuroblastoma cells to the mitochondrial complex I inhibitor and parkinsonian neurotoxin rotenone. Undifferentiated SK-N-MC human neuroblastoma cells were grown in the presence of rotenone (5 nM), and RNA was extracted at three different time points (baseline, 1 week, and 4 weeks) for labeling and hybridization to Affymetrix Human U133 Plus 2.0 GeneChips. Our results show that rotenone induces concerted alterations in gene expression that change over time. Particularly, alterations in transcripts related to DNA damage, energy metabolism, and protein metabolism are prominent during chronic complex I inhibition. These data suggest that early augmentation of capacity for energy production in response to mitochondrial inhibition might be deleterious to cellular function and survival. These experiments provide the first transcriptional analysis of a rotenone model of Parkinson's disease and insight into which mechanisms of neurodegeneration may be targeted for therapeutic intervention.


Asunto(s)
Expresión Génica/efectos de los fármacos , Insecticidas/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/genética , Rotenona/toxicidad , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcripción Genética/efectos de los fármacos
7.
Nat Neurosci ; 3(12): 1301-6, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11100151

RESUMEN

The cause of Parkinson's disease (PD) is unknown, but epidemiological studies suggest an association with pesticides and other environmental toxins, and biochemical studies implicate a systemic defect in mitochondrial complex I. We report that chronic, systemic inhibition of complex I by the lipophilic pesticide, rotenone, causes highly selective nigrostriatal dopaminergic degeneration that is associated behaviorally with hypokinesia and rigidity. Nigral neurons in rotenone-treated rats accumulate fibrillar cytoplasmic inclusions that contain ubiquitin and alpha-synuclein. These results indicate that chronic exposure to a common pesticide can reproduce the anatomical, neurochemical, behavioral and neuropathological features of PD.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Neostriado/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Vías Nerviosas/efectos de los fármacos , Enfermedad de Parkinson Secundaria/inducido químicamente , Rotenona/toxicidad , Sustancia Negra/efectos de los fármacos , Animales , Dopamina/metabolismo , Discinesias/etiología , Discinesias/patología , Discinesias/fisiopatología , Complejo I de Transporte de Electrón , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Masculino , NADH NADPH Oxidorreductasas/efectos de los fármacos , NADH NADPH Oxidorreductasas/metabolismo , Neostriado/patología , Neostriado/fisiopatología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Sustancia Negra/patología , Sustancia Negra/fisiopatología
8.
Prog Neurobiol ; 48(6): 613-34, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8809910

RESUMEN

Bioenergetic defects and abnormalities in glutamate neurotransmission have both been proposed to play important roles in neurological diseases of varying chronology, etiology and pathology. Recent experimental evidence suggests an intimate relationship between these two systems. Metabolic inhibition predisposes neurons to glutamate-mediated "excitotoxic" damage. The exact mechanism of this increased susceptibility is yet to be defined, but may involve, singly or in combination, decreased voltage-dependent Mg2+ blockade of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, abnormalities in cellular Ca2+ homeostasis, or elevated production of reactive oxygen species. It is believed that enhancement of excitotoxicity by impaired metabolism may be a ubiquitous mechanism of neuronal death in neurological disease. Further elucidation of the exact mechanism of this enhancement may lead to the discovery of new targets for therapeutic intervention.


Asunto(s)
Metabolismo Energético/fisiología , Aminoácidos Excitadores/toxicidad , Ácido Glutámico/toxicidad , Animales , Aminoácidos Excitadores/fisiología , Ácido Glutámico/fisiología , Humanos , Neurotransmisores/fisiología , Neurotransmisores/toxicidad
9.
Free Radic Res ; 49(5): 681-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740198

RESUMEN

Exposure to rotenone in vivo results in selective degeneration of dopaminergic neurons and development of neuropathologic features of Parkinson's disease (PD). As rotenone acts as an inhibitor of mitochondrial respiratory complex I, we employed oxidative lipidomics to assess oxidative metabolism of a mitochondria-specific phospholipid, cardiolipin (CL), in substantia nigra (SN) of exposed animals. We found a significant reduction in oxidizable polyunsaturated fatty acid (PUFA)-containing CL molecular species. We further revealed increased contents of mono-oxygenated CL species at late stages of the exposure. Notably, linoleic acid in sn-1 position was the major oxidation substrate yielding its mono-hydroxy- and epoxy-derivatives whereas more readily "oxidizable" fatty acid residues (arachidonic and docosahexaenoic acids) remained non-oxidized. Elevated levels of PUFA CLs were detected in plasma of rats exposed to rotenone. Characterization of oxidatively modified CL molecular species in SN and detection of PUFA-containing CL species in plasma may contribute to better understanding of the PD pathogenesis and lead to the development of new biomarkers of mitochondrial dysfunction associated with this disease.


Asunto(s)
Cardiolipinas/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Mitocondrias/metabolismo , Trastornos Parkinsonianos/metabolismo , Rotenona , Sustancia Negra/metabolismo , Animales , Ácido Araquidónico/metabolismo , Biomarcadores/metabolismo , Cardiolipinas/sangre , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ácido Linoleico/metabolismo , Masculino , Oxidación-Reducción , Trastornos Parkinsonianos/sangre , Trastornos Parkinsonianos/inducido químicamente , Ratas Endogámicas Lew , Factores de Tiempo
10.
J Cereb Blood Flow Metab ; 17(3): 265-72, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9119899

RESUMEN

The in vivo and in vitro bindings of radiolabeled rotenoids to mitochondrial complex I of rat striatum were examined after unilateral intrastriatal injections of quinolinic acid or 1-methyl-4-phenylpyridinium salt (MPP+). Quinolinic acid produced significant, similar losses of in vivo binding of [11C]dihydrorotenol ([11C]DHROL: 40%) and in vitro binding of [3H]dihydrorotenone ([3H]DHR: 53%) in the injected striatal at 13 days after the injection of neurotoxin. MPP+ reduced in vivo binding of [11C]DHROL up to-55%) as measured 1.5 to 6 h after its administration. Reductions of in vivo [11C]DHROL binding after either quinolinic acid or MPP+ injections did not correlate with changes in striatal blood flow as measured with [14C]iodoantipyrine. These results are consistent with losses of complex I binding sites for radiolabeled rotenoids, produced using cell death (quinolinic acid) or direct competition for the binding site (MPP+). Appropriately radiolabeled rotenoids may be useful for in vivo imaging studies of changes of complex I in neurodegenerative diseases.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Cuerpo Estriado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neurotoxinas/farmacología , Ácido Quinolínico/farmacología , Rotenona/análogos & derivados , 1-Metil-4-fenilpiridinio/administración & dosificación , 1-Metil-4-fenilpiridinio/metabolismo , Animales , Unión Competitiva , Cuerpo Estriado/irrigación sanguínea , Cuerpo Estriado/patología , Inyecciones , Masculino , Mitocondrias/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotoxinas/administración & dosificación , Neurotoxinas/metabolismo , Unión Proteica , Ácido Quinolínico/administración & dosificación , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Rotenona/metabolismo
11.
Neurobiol Aging ; 12(4): 334-6; discussion 352-5, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1961363

RESUMEN

Although excitotoxicity has been implicated in the pathogenesis of Alzheimer's disease, it is not likely to be the cause of this disorder. On the other hand, in the presence of the well-documented neuronal bioenergetic defects in Alzheimer's disease, normal concentrations of glutamate may become lethal, and excitotoxicity may become the final common pathway to cell death.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiología , Metabolismo Energético , Anciano , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Química Encefálica , Humanos
12.
Neurobiol Aging ; 10(5): 593-602, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2554168

RESUMEN

Excitatory amino acids (EAA) such as glutamate and aspartate are major transmitters of the cerebral cortex and hippocampus, and EAA mechanisms appear to play a role in learning and memory. Anatomical and biochemical evidence suggests that there is both pre- and postsynaptic disruption of EAA pathways in Alzheimer's disease. Dysfunction of EAA pathways could play a role in the clinical manifestations of Alzheimer's disease, such as memory loss and signs of cortical disconnection. Furthermore, EAA might be involved in the pathogenesis of Alzheimer's disease, by virtue of their neurotoxic (excitotoxic) properties. Circumstantial evidence raises the possibility that the EAA system may partially determine the distribution of pathology in Alzheimer's disease and may be important in producing the neurofibrillary tangles, RNA reductions and dendritic changes which characterize this devastating disorder. In this article, we will review the evidence suggesting a role for EAA in the clinical manifestations and pathogenesis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aminoácidos/fisiología , Receptores de Neurotransmisores/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Aminoácidos/metabolismo , Aminoácidos/toxicidad , Animales , Humanos , Receptores de Neurotransmisores/efectos de los fármacos , Receptores de Neurotransmisores/metabolismo
13.
Mol Neurobiol ; 12(1): 73-94, 1996 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8732541

RESUMEN

Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson's disease (PD). The substantia nigra pars compacta--the area where the primary pathological lesion is located--is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neurodegenerative disorder.


Asunto(s)
Encéfalo/fisiopatología , Ácido Glutámico/fisiología , Neuronas/fisiología , Neurotoxinas , Neurotransmisores/fisiología , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/fisiología , Encéfalo/metabolismo , Canales de Calcio/fisiología , Metabolismo Energético , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Humanos , Modelos Neurológicos , Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sustancia Negra/fisiopatología , Transmisión Sináptica
14.
Biochem Soc Symp ; 66: 85-97, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10989660

RESUMEN

The cause of Parkinson's disease (PD) is unknown, but reduced activity of complex I of the electron-transport chain has been implicated in the pathogenesis of both mitochondrial permeability transition pore-induced Parkinsonism and idiopathic PD. We developed a novel model of PD in which chronic, systemic infusion of rotenone, a complex-I inhibitor, selectively kills dopaminergic nerve terminals and causes retrograde degeneration of substantia nigra neurons over a period of months. The distribution of dopaminergic pathology replicates that seen in PD, and the slow time course of neurodegeneration mimics PD more accurately than current models. Our model should enhance our understanding of neurodegeneration in PD. Metabolic impairment depletes ATP, depresses Na+/K(+)-ATPase activity, and causes graded neuronal depolarization. This relieves the voltage-dependent Mg2+ block of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor, which is highly permeable to Ca2+. Consequently, innocuous levels of glutamate become lethal via secondary excitotoxicity. Mitochondrial impairment also disrupts cellular Ca2+ homoeostasis. Moreover, the facilitation of NMDA-receptor function leads to further mitochondrial dysfunction. To a large part, this occurs because Ca2+ entering neurons through NMDA receptors has 'privileged' access to mitochondria, where it causes free-radical production and mitochondrial depolarization. Thus there may be a feed-forward cycle wherein mitochondrial dysfunction causes NMDA-receptor activation, which leads to further mitochondrial impairment. In this scenario, NMDA-receptor antagonists may be neuroprotective.


Asunto(s)
Mitocondrias/fisiología , Enfermedad de Parkinson/fisiopatología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Apoptosis , Calcio/metabolismo , Modelos Animales de Enfermedad , Dopamina/fisiología , Complejo I de Transporte de Electrón , Ácido Glutámico/fisiología , Humanos , Mitocondrias/metabolismo , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Neuronas/fisiología , Ratas , Especies Reactivas de Oxígeno
15.
Arch Neurol ; 43(10): 1058-63, 1986 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-2428340

RESUMEN

Glutamate is the putative neurotransmitter of several clinically important pathways, including cortical association fibers, corticofugal pathways such as the pyramidal tract, and hippocampal, cerebellar, and spinal cord pathways. The excitatory actions of glutamate are mediated by multiple, distinct receptor types and potent receptor antagonists have recently been developed. Glutamate also has neurotoxic properties and can produce "excitotoxic" lesions reminiscent of human neurodegenerative disorders. Abnormally enhanced glutamatergic neurotransmission may cause excitotoxic cell damage and lead to the neuronal death associated with olivopontocerebellar atrophy, Huntington's disease, status epilepticus, hypoxia/ischemia, and hypoglycemia. Pharmacologic manipulation of the glutamatergic system may have great potential for the rational treatment of a variety of neurologic diseases.


Asunto(s)
Glutamatos/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Neurotransmisores , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Glutamatos/metabolismo , Glutamatos/toxicidad , Ácido Glutámico , Humanos , Canales Iónicos/efectos de los fármacos , Enfermedades del Sistema Nervioso/etiología , Receptores de Glutamato , Receptores de Neurotransmisores/efectos de los fármacos
16.
Arch Neurol ; 48(9): 977-81, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1835370

RESUMEN

Current long-term treatment of Parkinson's disease is inadequate, and improved symptomatic and neuroprotective therapies are needed. Recent interest has focused on the use of antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor in Parkinson's disease. Abnormally increased activity of the subthalamic nucleus is postulated to play a central pathophysiological role in the signs of Parkinson's disease, and NMDA antagonists may provide a means of decreasing this activity selectively. Like dopaminergic agonists, NMDA antagonists can reverse the akinesia and rigidity associated with monoamine depletion or neuroleptic-induced catalepsy. Very low doses of NMDA antagonists markedly potentiate the therapeutic effects of dopaminergic agonists. There is evidence that the beneficial effects of anticholinergic drugs and amantadine may be mediated, in part, by NMDA receptor blockade. Moreover, NMDA antagonists provide profound protection of dopaminergic neurons of the substantia nigra in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and methamphetamine models of Parkinson's disease. The clinical use of NMDA antagonists may prove useful in Parkinson's disease to treat symptoms and retard disease progression.


Asunto(s)
N-Metilaspartato/antagonistas & inhibidores , Enfermedad de Parkinson/tratamiento farmacológico , Fosfoproteínas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc , Globo Pálido/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo , Trihexifenidilo/uso terapéutico , Ácido gamma-Aminobutírico/metabolismo
17.
Arch Neurol ; 48(12): 1281-4, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1845034

RESUMEN

Human immunodeficiency virus infection is frequently complicated by a syndrome of central nervous system dysfunction known as the acquired immunodeficiency syndrome dementia complex (ADC). The ADC is characterized by abnormalities in cognition, motor performance, and behavior, and it produces serious morbidity in a significant number of patients with acquired immunodeficiency syndrome. The pathogenesis of ADC is unclear, but appears to be caused by the human immunodeficiency virus itself, rather than by a secondary opportunistic process. Herein, we review the data regarding the pathogenesis of ADC and hypothesize a mechanism involving excitotoxicity and dopaminergic dysfunction. N-methyl-D-aspartate receptor antagonists may be of therapeutic benefit, as these agents may both limit glutamate-mediated neuronal dysfunction and improve dopaminergic neuronal function.


Asunto(s)
Complejo SIDA Demencia/metabolismo , Dopamina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Complejo SIDA Demencia/tratamiento farmacológico , Complejo SIDA Demencia/etiología , Complejo SIDA Demencia/patología , Adulto , Encéfalo/metabolismo , Ensayos Clínicos Fase I como Asunto , Humanos , Levodopa/uso terapéutico , Masculino , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Zidovudina/uso terapéutico
18.
Neurology ; 42(4): 733-8, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1314341

RESUMEN

The concept of excitotoxicity, neuronal death produced by overstimulation of excitatory amino acid receptors, has become a popular way of explaining the pathogenesis of neuronal death in a variety of acute and chronic neurologic diseases. While there is strong evidence supporting the role of excitotoxicity in acute processes such as hypoxia/ischemia and hypoglycemia, the role of excitotoxicity in chronic neurologic disease is not firmly established. To account for the inter- and intraregional variations in pathology of different neurodegenerative disorders, we suggest two modified forms of the excitotoxic hypothesis in which specific populations of neurons become more vulnerable to excitotoxic insult either by (1) possessing abnormal excitatory amino acid receptor subtypes or (2) being afflicted by any disease process that impairs cellular energy metabolism or otherwise decreases neuronal membrane potential. In these ways, excitotoxicity may be a final common pathway of neuronal death in a variety of neurodegenerative diseases.


Asunto(s)
Enfermedades del Sistema Nervioso/etiología , Neurotoxinas/metabolismo , Enfermedad Aguda , Aminoácidos/metabolismo , Enfermedad Crónica , Humanos , Modelos Neurológicos , Degeneración Nerviosa , Neurología/tendencias , Receptores de Aminoácidos , Receptores de Superficie Celular/fisiología
19.
Neurology ; 44(11 Suppl 8): S7-13, 1994 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7526272

RESUMEN

Glutamate is the predominant excitatory neurotransmitter in the mammalian CNS. The neurotransmitter pool of glutamate is stored in synaptic vesicles and, upon depolarization, is released into the synaptic cleft in a Ca(2+)-dependent fashion. Glutamate is cleared from the synaptic cleft by high-affinity, Na(+)-dependent uptake carriers located in both neurons and glia. Glutamate acts on several distinct families of receptors, each of which has multiple subtypes with distinct pharmacologic and physiologic properties. Under some conditions, glutamate and related compounds act as excitotoxins and might participate in the events leading to neuronal damage and death in a variety of acute and chronic neurologic disorders. The potential for glutamate to become an excitotoxin is highly dependent upon neuronal metabolic status. A great deal of interest in developing selective, well-tolerated glutamate receptor antagonists for the treatment of a variety of neurologic disorders exists.


Asunto(s)
Sistema Nervioso Central/metabolismo , Ácido Glutámico/metabolismo , Sistema Nervioso Central/fisiología , Ácido Glutámico/efectos adversos , Ácido Glutámico/fisiología , Humanos , Canales Iónicos/fisiología , Terminaciones Nerviosas/fisiología , Enfermedades del Sistema Nervioso/etiología , Neurotoxinas/efectos adversos , Terminales Presinápticos/fisiología , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Neurology ; 56(4): 455-62, 2001 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11222787

RESUMEN

BACKGROUND: Preclinical studies suggest that glutamate antagonists help ameliorate motor fluctuations in patients with PD treated with levodopa. METHODS: In a multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-ranging study, the authors assessed the safety, tolerability, and efficacy of the glutamate receptor blocker remacemide hydrochloride in 279 patients with motor fluctuations treated with levodopa. The primary objective was to assess the short-term tolerability and safety of four dosage levels of remacemide during 7 weeks of treatment. Patients were also monitored with home diaries and the Unified PD Rating Scale (UPDRS) to collect preliminary data on treatment efficacy. RESULTS: Remacemide was well tolerated up to a dosage of 300 mg/d on a twice daily schedule and 600 mg/d on a four times daily schedule. The most common dosage-related adverse events were dizziness and nausea, as observed in previous studies of remacemide. The percent "on" time and motor UPDRS scores showed trends toward improvement in the patients treated with 150 and 300 mg/d remacemide compared with placebo-treated patients, although these improvements were not significant. CONCLUSION: Remacemide is a safe and tolerable adjunct to dopaminergic therapy for patients with PD and motor fluctuations. Although this study had limited power to detect therapeutic effects, the observed improvement is consistent with studies of non-human primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian signs and symptoms. Additional studies are warranted to confirm these results over an extended period of observation, and to explore the potential neuroprotective effects of remacemide in slowing the progression of PD.


Asunto(s)
Acetamidas/efectos adversos , Acetamidas/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Cooperación del Paciente , Receptores de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA