Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 40(1): 40-50, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412616

RESUMEN

Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.


Asunto(s)
Interleucina-6/metabolismo , Peritoneo/patología , Peritonitis/genética , Peritonitis/patología , Células TH1/inmunología , Enfermedad Aguda , Traslado Adoptivo , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Retroalimentación Fisiológica , Fibrosis , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Células TH1/trasplante
2.
J Neurosci ; 38(21): 4899-4911, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29712778

RESUMEN

Pain associated with skeletal pathology or disease is a significant clinical problem, but the mechanisms that generate and/or maintain it remain poorly understood. In this study, we explored roles for GDNF, neurturin, and artemin signaling in bone pain using male Sprague Dawley rats. We have shown that inflammatory bone pain involves activation and sensitization of peptidergic, NGF-sensitive neurons via artemin/GDNF family receptor α-3 (GFRα3) signaling pathways, and that sequestering artemin might be useful to prevent inflammatory bone pain derived from activation of NGF-sensitive bone afferent neurons. In addition, we have shown that inflammatory bone pain also involves activation and sensitization of nonpeptidergic neurons via GDNF/GFRα1 and neurturin/GFRα2 signaling pathways, and that sequestration of neurturin, but not GDNF, might be useful to treat inflammatory bone pain derived from activation of nonpeptidergic bone afferent neurons. Our findings suggest that GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.SIGNIFICANCE STATEMENT Pain associated with skeletal pathology, including bone cancer, bone marrow edema syndromes, osteomyelitis, osteoarthritis, and fractures causes a major burden (both in terms of quality of life and cost) on individuals and health care systems worldwide. We have shown the first evidence of a role for GDNF, neurturin, and artemin in the activation and sensitization of bone afferent neurons, and that sequestering these ligands reduces pain behavior in a model of inflammatory bone pain. Thus, GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.


Asunto(s)
Enfermedades Óseas/fisiopatología , Huesos/inervación , Huesos/fisiopatología , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Inflamación/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Neuronas Aferentes/fisiología , Neurturina/genética , Dolor/fisiopatología , Animales , Médula Ósea/inervación , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal
4.
Mol Pain ; 13: 1744806917697011, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28326938

RESUMEN

Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. We demonstrate that nerve growth factor injected directly into rat tibia rapidly activates and sensitizes bone nociceptors and produces acute behavioral responses with a similar time course. The nerve growth factor-induced changes in the activity and sensitivity of bone nociceptors we report are dependent on signaling through the TrkA receptor, but are not affected by mast cell stabilization. We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.


Asunto(s)
Huesos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Nociceptores/metabolismo , Osteoartritis/complicaciones , Dolor/etiología , Transducción de Señal/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Anticuerpos/farmacología , Huesos/patología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Masculino , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Factor de Crecimiento Nervioso/farmacología , Osteoartritis/inducido químicamente , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sustancia P/metabolismo , Canales Catiónicos TRPV/inmunología , Canales Catiónicos TRPV/metabolismo , Ubiquitina Tiolesterasa/metabolismo
5.
Immunol Cell Biol ; 92(9): 761-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25027037

RESUMEN

Activation of the Toll-like receptor (TLR) family of innate immune sensors stimulates multiple signal transduction pathways. Previous studies have suggested that TLR2, TLR4 and TLR9 induce serine phosphorylation of Signal Transducers and Activators of Transcription-1 (STAT1) at residue 727 (S727), although its role in TLR signaling was unclear. We report here that STAT1 rapidly undergoes phosphorylation following TLR4 challenge with lipopolysaccharide (LPS) in a model of LPS hypersensitivity in vivo. Importantly, genetic ablation of STAT1 protected against LPS-induced lethality suggesting that STAT1 may have a key role in TLR-induced inflammation. We have found that multiple TLRs induce Ser727 phosphorylation of STAT1, which is dependent on MyD88 and TRIF signaling, but independent of interferon (IFN) regulatory factor (IRF)-3, IRF7 and the IFN receptor complex, suggesting that activation is a direct TLR response rather than autocrine activation via IFN. Importantly, we found that STAT1 interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6), a key mediator of TLR signaling after TLR challenge and that following activation, STAT1 translocates to the nucleus. Critically, macrophages generated from mice in which the S727 residue was replaced with alanine (STAT1 S727A mice) display significantly reduced TNFα protein production, but not reduced interleukin-6 or RANTES protein in response to multiple TLR challenges, as compared with wild-type macrophages. These results clearly demonstrate cross-talk between the TLR and JAK/STAT signaling pathways with direct recruitment of STAT1 by TRAF6 and that the direct activation of STAT1 by TLR signaling suggests a crucial role for STAT1 in TLR-induced inflammation.


Asunto(s)
Inflamación/inmunología , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Células Cultivadas , Quimiocina CCL5/inmunología , Factor 3 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/inmunología , Interleucina-6/inmunología , Quinasas Janus/inmunología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Ratones , Factor 88 de Diferenciación Mieloide/inmunología , Fosforilación/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Factor de Necrosis Tumoral alfa/inmunología
6.
J Immunol ; 186(2): 1199-208, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21148800

RESUMEN

Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130(F/F) knock-in mutant mice displaying hyperactivated IL-6-dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130(F/F) mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130(F/F) mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130(F/F):Stat3(+/-) mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130(F/F) mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.


Asunto(s)
Mediadores de Inflamación/fisiología , Interleucina-6/fisiología , Factor de Transcripción STAT3/fisiología , Receptor Toll-Like 4/fisiología , Regulación hacia Arriba/inmunología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Receptor gp130 de Citocinas/genética , Técnicas de Sustitución del Gen , Interleucina-6/biosíntesis , Interleucina-6/genética , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/fisiología , Ratas , Ratas Wistar , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiología , Choque Séptico/genética , Choque Séptico/inmunología , Choque Séptico/patología , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba/genética
7.
Immunol Cell Biol ; 90(5): 559-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21670738

RESUMEN

Among the many inflammatory mediators induced by the prototypical inflammatory stimulus lipopolysaccharide (LPS), which signals via Toll-like receptor (TLR)-4, interleukin (IL)-6 has recently been shown to feedback and augment TLR4 signaling when overproduced in LPS hypersensitive gp130(F/F) mice. This regulation by IL-6 in gp130(F/F) mice requires hyperactivation of the latent transcription factor signal transducer and activator of transcription (STAT) 3 via the IL-6 signaling receptor subunit gp130. However, the identity of LPS/TLR4-responsive inflammatory signaling pathways and gene networks, which are modulated by IL-6 (via gp130/STAT3), and the extent to which the tissue and cellular context of this regulation contributes to LPS-induced endotoxic shock in gp130(F/F) mice, are unknown. We report here that in LPS-treated macrophages from gp130(F/F) mice, gp130 hyperactivation upregulated the LPS-induced expression of inflammatory mediators downstream of Janus kinase (JAK)/STAT, nuclear factor κ-light-chain-enhancer of activated B cells, interferon regulatory factor and c-Jun N-terminal kinase/p38 mitogen-activated protein kinase pathways. Notably, however, LPS administration to bone marrow chimeras indicated that heightened LPS/TLR4 signaling in haemopoietic-derived gp130(F/F) immune cells is dispensable for the hypersensitivity of gp130(F/F) mice to LPS-induced endotoxemia. To understand the molecular consequences of gp130 hyperactivity in non-haemopoietic tissue on LPS-induced systemic inflammation, global gene expression profiling of livers from LPS-treated gp130(F/F) mice was performed and identified 264 hepatic LPS-responsive genes, which are differentially regulated by hyperactive gp130 signaling. Collectively, the substantial transcriptional reprogramming of LPS-responsive genes in gp130(F/F) mice emphasizes non-haemopoietic gp130 signaling as a key regulator of systemic inflammatory responses during LPS-induced endotoxemia.


Asunto(s)
Hígado/inmunología , Macrófagos/inmunología , Factor de Transcripción STAT3/metabolismo , Choque Séptico/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Receptor gp130 de Citocinas/genética , Perfilación de la Expresión Génica , Interleucina-6/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Mutación/genética , Factor de Transcripción STAT3/genética , Choque Séptico/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Quimera por Trasplante
8.
Nat Rev Endocrinol ; 20(2): 64, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062119
12.
Nat Rev Endocrinol ; 20(4): 193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308073
14.
Nat Rev Endocrinol ; 20(4): 193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388678
16.
Nat Rev Endocrinol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926499
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA