Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(2): 2884-2893, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297806

RESUMEN

We numerically investigate the figures of merit for single-photon emission in a planar GaAs-on-insulator waveguide featuring a V-groove geometry. Thanks to a field enhancement effect arising due to boundary conditions of this waveguide, the structure features an ultra-small mode area enabling a factor of a maximum 2.8 times enhancement of the Purcell factor for quantum dot and a more significant 7 times enhancement for the atomic-size solid-state emitters with the aligned dipole orientation. In addition, the coupling efficiency to the fundamental quasi-TE mode is also improved. To take into account potential on-chip integration, we further show that the V-groove mode profile can be converted using a tapering section to the mode profile of a standard ridge waveguide while maintaining both the high Purcell factor and the good fundamental mode coupling efficiency.

2.
Opt Express ; 30(7): 11973-11985, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473128

RESUMEN

We report on the design of nanohole/nanobeam cavities in ridge waveguides for on-chip, quantum-dot-based single-photon generation. Our design overcomes limitations of a low-refractive-index-contrast material platform in terms of emitter-mode coupling efficiency and yields an outcoupling efficiency of 0.73 to the output ridge waveguide. Importantly, this high coupling efficiency is combined with broadband operation of 9 nm full-width half-maximum. We provide an explicit design procedure for identifying the optimum geometrical parameters according to the developed design. Besides, we fabricate and optically characterize a proof-of-concept waveguide structure. The results of the microphotoluminescence measurements provide evidence for cavity-enhanced spontaneous emission from the quantum dot, thus supporting the potential of our design for on-chip single-photon sources applications.

3.
Opt Express ; 29(3): 4174-4180, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771002

RESUMEN

We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot. Our system, which is based on a self-aligned quantum dot- micro-cavity structure, erases the need for complex steps of lithography and nanofabrication. We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7. We harness the potential of our device to generate photon pairs entangled in time bin, reaching a fidelity of 0.84(5) with the maximally entangled state. The achieved pair collection efficiency is 4 times larger than the state-of-the art for this application. The device, which theoretically supports pair extraction efficiencies of nearly 0.5 is a promising candidate for the implementation of bright sources of time-bin, polarization- and hyper entangled photon pairs in a straightforward manner.

4.
J Inherit Metab Dis ; 44(5): 1215-1225, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33973257

RESUMEN

Ethylmalonic acid (EMA) is a major and potentially cytotoxic metabolite associated with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, a condition whose status as a disease is uncertain. Unexplained high EMA is observed in some individuals with complex neurological symptoms, who carry the SCAD gene (ACADS) variants, c.625G>A and c.511C>T. The variants have a high allele frequency in the general population, but are significantly overrepresented in individuals with elevated EMA. This has led to the idea that these variants need to be associated with variants in other genes to cause hyperexcretion of ethylmalonic acid and possibly a diseased state. Ethylmalonyl-CoA decarboxylase (ECHDC1) has been described and characterized as an EMA metabolite repair enzyme, however, its clinical relevance has never been investigated. In this study, we sequenced the ECHDC1 gene (ECHDC1) in 82 individuals, who were reported with unexplained high EMA levels due to the presence of the common ACADS variants only. Three individuals with ACADS c.625G>A variants were found to be heterozygous for ECHDC1 loss-of-function variants. Knockdown experiments of ECHDC1, in healthy human cells with different ACADS c.625G>A genotypes, showed that ECHDC1 haploinsufficiency and homozygosity for the ACADS c.625G>A variant had a synergistic effect on cellular EMA excretion. This study reports the first cases of ECHDC1 gene defects in humans and suggests that ECHDC1 may be involved in elevated EMA excretion in only a small group of individuals with the common ACADS variants. However, a direct link between ECHDC1/ACADS deficiency, EMA and disease could not be proven.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Variación Genética , Errores Innatos del Metabolismo Lipídico/genética , Malonatos/metabolismo , Enzima Bifuncional Peroxisomal/genética , Acil-CoA Deshidrogenasa/genética , Alelos , Frecuencia de los Genes , Genotipo , Células HEK293 , Humanos , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa
5.
J Biol Chem ; 294(33): 12380-12391, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31235473

RESUMEN

Three mitochondrial metabolic pathways are required for efficient energy production in eukaryotic cells: the electron transfer chain (ETC), fatty acid ß-oxidation (FAO), and the tricarboxylic acid cycle. The ETC is organized into inner mitochondrial membrane supercomplexes that promote substrate channeling and catalytic efficiency. Although previous studies have suggested functional interaction between FAO and the ETC, their physical interaction has never been demonstrated. In this study, using blue native gel and two-dimensional electrophoreses, nano-LC-MS/MS, immunogold EM, and stimulated emission depletion microscopy, we show that FAO enzymes physically interact with ETC supercomplexes at two points. We found that the FAO trifunctional protein (TFP) interacts with the NADH-binding domain of complex I of the ETC, whereas the electron transfer enzyme flavoprotein dehydrogenase interacts with ETC complex III. Moreover, the FAO enzyme very-long-chain acyl-CoA dehydrogenase physically interacted with TFP, thereby creating a multifunctional energy protein complex. These findings provide a first view of an integrated molecular architecture for the major energy-generating pathways in mitochondria that ensures the safe transfer of unstable reducing equivalents from FAO to the ETC. They also offer insight into clinical ramifications for individuals with genetic defects in these pathways.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias Cardíacas/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Ciclo del Ácido Cítrico/fisiología , Ratones , Oxidación-Reducción , Ratas
6.
Pediatr Res ; 88(4): 556-564, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045933

RESUMEN

BACKGROUND: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is the most frequent fatty acid oxidation (FAO) defect in humans. MCAD-deficient fibroblasts are more resistant to oxidative stress-induced cell death than other FAO defects and healthy controls. METHODS: Herein we investigate the antioxidant response and mitochondrial function in fibroblasts from MCAD-deficient patients (c.985 A>G/c.985 A>G) and healthy controls. RESULTS: MCAD-deficient fibroblasts showed increased level of mitochondrial superoxide, while lipids were less oxidatively damaged, and higher amount of manganese superoxide dismutase were detected compared to healthy controls, showing forceful antioxidant system in MCADD. We showed increased maximal respiration and reserve capacity in MCAD-deficient fibroblasts compared to controls, indicating more capacity through the tricarboxylic acid (TCA) cycle and subsequently respiratory chain. This led us to study the pyruvate dehydrogenase complex (PDC), the key enzyme in the glycolysis releasing acetyl-CoA to the TCA cycle. MCAD-deficient fibroblasts displayed not only significantly increased PDC but also increased lipoylated PDC protein levels compared to healthy controls. CONCLUSIONS: Based on these findings, we raise the interesting hypothesis that increased PDC-bound lipoic acid, synthesized from accumulated octanoic acid in MCADD, may affect the cellular antioxidant pool in MCADD.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Antioxidantes/farmacología , Errores Innatos del Metabolismo Lipídico/metabolismo , Ácido Tióctico/química , Acil-CoA Deshidrogenasa/metabolismo , Antioxidantes/metabolismo , Caprilatos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Muerte Celular , Fibroblastos/metabolismo , Genotipo , Glucólisis , Humanos , Peroxidación de Lípido , Mitocondrias/metabolismo , Estrés Oxidativo , Fenotipo , Superóxidos/metabolismo
7.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481712

RESUMEN

As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.


Asunto(s)
Errores Innatos del Metabolismo/metabolismo , Mutación , Deficiencia de Riboflavina/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Envejecimiento , Animales , Dieta , Transporte de Electrón , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ácido Fólico/química , Variación Genética , Homocisteína/metabolismo , Humanos , Sistema Inmunológico , Mitocondrias/metabolismo , Fenotipo , Embarazo , Pliegue de Proteína , Riboflavina/química
8.
Am J Hum Genet ; 98(6): 1130-1145, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259049

RESUMEN

Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.


Asunto(s)
Mutación del Sistema de Lectura/genética , Enfermedades Mitocondriales/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Nucleotidiltransferasas/genética , Riboflavina/farmacología , Complejo Vitamínico B/farmacología , Adulto , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Transporte de Electrón , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Flavina-Adenina Dinucleótido/metabolismo , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutagénesis Sitio-Dirigida , Unión Proteica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
9.
Phys Rev Lett ; 123(24): 247403, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31922831

RESUMEN

Nanowire antennas embedding a single quantum dot (QD) have recently emerged as versatile platforms to realize bright sources of quantum light. In this theoretical work, we show that the thermally driven, low-frequency vibrations of the nanowire have a major impact on the QD light emission spectrum. Even at liquid helium temperatures, these prevent the emission of indistinguishable photons. To overcome this intrinsic limitation, we propose three designs that restore photon indistinguishability thanks to a specific engineering of the mechanical properties of the nanowire. We anticipate that such a mechanical optimization will also play a key role in the development of other high-performance light-matter interfaces based on nanostructures.

10.
Nano Lett ; 18(10): 6434-6440, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30185050

RESUMEN

Nanowire antennas embedding single quantum dots (QDs) have recently emerged as a versatile solid-state platform for quantum optics. Within the nanowire section, the emitter position simultaneously determines the strength of the light-matter interaction, as well as the coupling to potential decoherence channels. Therefore, to quantitatively understand device performance and guide future optimization, it is highly desirable to map the emitter position with an accuracy much smaller than the waveguide diameter, on the order of a few hundreds of nanometers. We introduce here a nondestructive, all-optical mapping technique that exploits the QD emission into two guided modes with different transverse profiles. These two modes are fed by the same emitter and thus interfere. The resulting intensity pattern, which is highly sensitive to the emitter position, is resolved in the far-field using Fourier microscopy. We demonstrate this technique on a standard microphotoluminescence setup and map the position of individual QDs in a nanowire antenna with a spatial resolution of ±10 nm. This work opens important perspectives for the future development of light-matter interfaces based on nanowire antennas. Beyond single-QD devices, it will also provide a valuable tool for the investigation of collective effects that imply several emitters coupled to an optical waveguide.

11.
Opt Express ; 26(9): 11366-11392, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716058

RESUMEN

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with a relatively low quality (Q) factor and a longer cavity with a high Q. We use five state-of-the-art numerical simulation techniques to compute the cavity Q factor and the resonance wavelength λ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.

12.
Neuroendocrinology ; 107(2): 167-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949799

RESUMEN

OBJECTIVE: Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. DESIGN/PATIENTS: Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. METHODS/RESULTS: Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes. CONCLUSION: We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopresinas/genética , Femenino , Variación Genética , Humanos , Masculino , Linaje
13.
Neuroendocrinology ; 106(2): 167-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28494452

RESUMEN

BACKGROUND/AIM: Variability in the severity and age at onset of autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) may be associated with certain types of variants in the arginine vasopressin (AVP) gene. In this study, we aimed to describe a large family with an apparent predominant female occurrence of polyuria and polydipsia and to determine the underlying cause. METHODS: The family members reported their family demography and symptoms. Two subjects were diagnosed by fluid deprivation and dDAVP challenge tests. Eight subjects were tested genetically. The identified variant along with 3 previously identified variants in the AVP gene were investigated by heterologous expression in a human neuronal cell line (SH-SY5Y). RESULTS: Both subjects investigated clinically had a partial neurohypophyseal diabetes insipidus phenotype. A g.276_278delTCC variant in the AVP gene causing a Ser18del deletion in the signal peptide (SP) of the AVP preprohormone was perfectly co-segregating with the disease. When expressed in SH-SY5Y cells, the Ser18del variant along with 3 other SP variants (g.227G>A, Ser17Phe, and Ala19Thr) resulted in reduced AVP mRNA, impaired AVP secretion, and partial AVP prohormone degradation and retention in the endoplasmic reticulum. Impaired SP cleavage was demonstrated directly in cells expressing the Ser18del, g.227G>A, and Ala19Thr variants, using state-of-the-art mass spectrometry. CONCLUSION: Variants affecting the SP of the AVP preprohormone cause adFNDI with variable phenotypes by a mechanism that may involve impaired SP cleavage combined with effects at the mRNA, protein, and cellular level.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Diabetes Insípida Neurogénica/metabolismo , Variación Genética , Neurofisinas/genética , Neurofisinas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo , Adulto , Línea Celular Tumoral , Niño , Retículo Endoplásmico/metabolismo , Familia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Proteolisis , ARN Mensajero/metabolismo , Factores Sexuales
14.
Eur J Pediatr ; 177(9): 1399-1405, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29594432

RESUMEN

Congenital nephrogenic diabetes insipidus (CNDI) is characterized by the reduced ability of renal collecting duct cells to reabsorb water in response to the antidiuretic effect of vasopressin. Chronic polyuria and polydipsia are the hallmarks of the disease. Approximately 90% of all patients with CNDI have X-linked inherited disease caused by variants in the arginine vasopressin receptor 2 (AVPR2) gene. We present genetic findings in 34 individuals from 19 kindreds including one or more family members with CNDI. Coding regions of AVPR2 were sequenced bi-directionally. We identified eight novel disease-causing variants in AVPR2, p.Arg68Alafs*124, p.Ser171Arg, p.Gln174Pro, p.Trp200Arg, p.Gly201Cys, p.Gly220Arg, p.Val226Glu, and p.Gln291Pro in nine kindreds. In all three families with more than one affected individual, the novel variants segregated with the disease. We also identified eight recurrent disease-causing variants, p.Val88Met, p.Leu111Valfs*80, p.Arg113Trp, p.Tyr124*, p.Ser167Leu, p.Thr207Asn, p.Arg247Alafs*12, and p.Arg337* in ten kindreds. Our findings contribute to the growing list of AVPR2 variants causing X-linked CNDI. CONCLUSION: Being a rapid diagnostic tool for CNDI, direct sequencing of AVPR2 should be encouraged in newborns with familial predisposition to CNDI. What is Known: • Disease-causing variants in AVPR2 cause X-linked congenital nephrogenic diabetes insipidus (CNDI). • DNA sequencing of AVPR2 is rapid, facilitates differential diagnosis, early intervention, and genetic diagnosis thus reducing morbidity in CNDI. What is New: • We identified eight novel disease-causing variants in AVPR2: p.Arg68Alafs*124, p.Ser171Arg, p.Gln174Pro, p.Trp200Arg, p.Gly201Cys, p.Gly220Arg, p.Val226Glu, and p.Gln291Pro, thereby adding to the growing list of AVPR2 disease-causing variants and emphasizing the importance of genetic testing in CNDI.


Asunto(s)
Diabetes Insípida Nefrogénica/genética , Receptores de Vasopresinas/genética , Niño , Preescolar , Familia , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Análisis de Secuencia de ADN/métodos
15.
Mol Genet Metab ; 122(4): 182-188, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29122468

RESUMEN

Vitamin B2, riboflavin is essential for cellular function, as it participates in a diversity of redox reactions central to human metabolism, through its role as precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are electron carriers. The electron transfer flavoprotein (ETF) and its dehydrogenase (ETFDH), uses FAD as cofactor. The ETF and ETFDH are forming the electron transport pathway for many mitochondrial flavoprotein dehydrogenases involved in fatty acid, amino acid and choline metabolism. A variation in either ETF or ETFDH causes multiple acyl-CoA dehydrogenation deficiency (MADD), but genetic variations in the riboflavin metabolism or transportation of riboflavin can also cause MADD. The most common variations are located in the riboflavin transporter 2 (RFVT2) and 3 (RFVT3), that are highly expressed in brain and intestinal tissues, respectively. Deficiency of riboflavin transporter 1 (RFVT1), encoded by the SLC52A1 gene, highly expressed in the placenta, has only been reported once. We here report a case of transient MADD, caused by a heterozygous intronic variation, c.1134+11G>A, in the SLC52A1 gene encoding RFVT1. This variation creates a binding site for the splice inhibitory hnRNP A1 protein and causes exon 4 skipping. Riboflavin deficiency and maternal malnutrition during pregnancy might have been the determining factor in the outcome of this case.


Asunto(s)
Exones/genética , Variación Genética , Intrones/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Receptores Acoplados a Proteínas G/genética , Riboflavina/metabolismo , Estudios de Casos y Controles , ADN/sangre , ADN/genética , ADN/aislamiento & purificación , Análisis Mutacional de ADN , Femenino , Fibroblastos/química , Células HEK293 , Heterocigoto , Humanos , Recién Nacido , Proteínas de Transporte de Membrana/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/fisiopatología , Mutación , Oxidación-Reducción , Embarazo , Riboflavina/genética , Riboflavina/uso terapéutico
16.
J Inherit Metab Dis ; 40(5): 641-655, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28516284

RESUMEN

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inherited disorder of mitochondrial fatty acid oxidation that is characterized by the presence of increased butyrylcarnitine and ethylmalonic acid (EMA) concentrations in plasma and urine. Individuals with symptomatic SCADD may show relatively severe phenotype, while the majority of those who are diagnosed through newborn screening by tandem mass spectrometry may remain asymptomatic. As such, the associated clinical symptoms are very diverse, ranging from severe metabolic or neuromuscular disabilities to asymptomatic. Molecular analysis of affected individuals has identified rare gene variants along with two common gene variants, c.511C > T and c.625G > A. In vitro studies have demonstrated that the common variants as well as the great majority of rare variants, which are missense variants, impair folding, that may lead to toxic accumulation of the encoded protein, and/or metabolites, and initiate excessive production of ROS and chronic oxidative stress. It has been suggested that this cell toxicity in combination with yet unknown factors can trigger disease development. This association and the full implications of SCADD are not commonly appreciated. Accordingly, there is a worldwide discussion of the relationship of clinical manifestation to SCADD, and whether SCAD gene variants are disease associated at all. Therefore, SCADD is not part of the newborn screening programs in most countries, and consequently many patients with SCAD gene variants do not get a diagnosis and the possibilities to be followed up during development.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Variación Genética/genética , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/patología , Acil-CoA Deshidrogenasa/genética , Animales , Humanos , Recién Nacido , Tamizaje Neonatal/métodos
17.
J Opt Soc Am A Opt Image Sci Vis ; 34(9): 1632-1641, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036165

RESUMEN

Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

18.
Acta Paediatr ; 106(1): 161-167, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27748541

RESUMEN

AIM: Bartter syndrome is an autosomal-recessive inherited disease in which patients present with hypokalaemia and metabolic alkalosis. We present two apparently nonrelated cases with antenatal Bartter syndrome type I, due to a novel variant in the SLC12A1 gene encoding the bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2 in the thick ascending limb of the loop of Henle. METHODS: Blood samples were received from the two cases and 19 of their relatives, and deoxyribonucleic acid was extracted. The coding regions of the SLC12A1 gene were amplified using polymerase chain reaction, followed by bidirectional direct deoxyribonucleic acid sequencing. RESULTS: Each affected child in the two families was homozygous for a novel inherited variant in the SLC12A1gene, c.1614T>A. The variant predicts a change from a tyrosine codon to a stop codon (p.Tyr538Ter). The two cases presented antenatally and at six months of age, respectively. CONCLUSION: The two cases were homozygous for the same variant in the SLC12A1 gene, but presented clinically at different ages. This could eventually be explained by the presence of other gene variants or environmental factors modifying the phenotypes. The phenotypes of the patients were similar to other patients with antenatal Bartter syndrome.


Asunto(s)
Síndrome de Bartter/genética , Mutación Missense , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Síndrome de Bartter/diagnóstico , Femenino , Marcadores Genéticos , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Embarazo , Diagnóstico Prenatal
19.
Proteomics ; 16(7): 1166-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26867521

RESUMEN

Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 (http://proteomecentral.proteomexchange.org/dataset/PXD002741) and PXD002742 (http://proteomecentral.proteomexchange.org/dataset/PXD002741).


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Dioxigenasas/deficiencia , Dioxigenasas/genética , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Púrpura/metabolismo , Acetilación , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Proteoma/genética
20.
Hum Mol Genet ; 23(16): 4285-301, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24698980

RESUMEN

Mitochondrial dysfunction and oxidative stress are central to the molecular pathology of many human diseases. Riboflavin responsive multiple acyl-CoA dehydrogenation deficiency (RR-MADD) is in most cases caused by variations in the gene coding for electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Currently, patients with RR-MADD are treated with high doses of riboflavin resulting in improvements of the clinical and biochemical profiles. However, in our recent studies of RR-MADD, we have shown that riboflavin treatment cannot fully correct the molecular defect in patient cells producing increased reactive oxygen species (ROS). In the current study, we aim to elucidate the cellular consequences of increased ROS by studying the cellular ROS adaption systems including antioxidant system, mitochondrial dynamics and metabolic reprogramming. We have included fibroblasts from six unrelated RR-MADD patients and two control fibroblasts cultivated under supplemented and depleted riboflavin conditions and with coenzyme Q10 (CoQ10) treatment. We demonstrated inhibition of mitochondrial fusion with increased fractionation and mitophagy in the patient fibroblasts. Furthermore, we indicated a shift in the energy metabolism by decreased protein levels of SIRT3 and decreased expression of fatty acid ß-oxidation enzymes in the patient fibroblasts. Finally, we showed that CoQ10 treatment has a positive effect on the mitochondrial dynamic in the patient fibroblasts, indicated by increased mitochondrial fusion marker and reduced mitophagy. In conclusion, our results indicate that RR-MADD patient fibroblasts suffer from a general mitochondria dysfunction, probably initiated as a rescue mechanism for the patient cells to escape apoptosis as a result of the oxidative stress.


Asunto(s)
Fibroblastos/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Riboflavina/farmacología , Piel/metabolismo , Vitaminas/farmacología , Antioxidantes/metabolismo , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Piel/citología , Piel/efectos de los fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA