Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 23(11): 1771-1781, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34612297

RESUMEN

Gaseous iodomethane (CH3I) is naturally emitted into the atmosphere by biological activity in oceans and during severe accidents (SAs) in nuclear power plants. In this latter case, a part of radioactive iodine such as 131I may be released. Improving the knowledge of CH3I transport and reactivity in the atmosphere is important since they are strongly linked to first the cycle of ozone and second to the dispersion of radioactive CH3I with potential radiological consequences on both the environment and human health. Here, the interaction process of CH3I with NaCl as a surrogate of atmospheric aerosols was investigated under ambient air conditions by using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS). The DRIFTS spectra of NaCl clearly evidenced CH3I adsorption on the NaCl particle surface. A part of CH3I ((1.68 ± 0.85) × 1014 molecule per mgNaCl) was found to be strongly bonded to NaCl since no desorption was observed. The CH3I adsorption on the NaCl surface presented a 1st order kinetics relative to its gas phase concentration. The uptake coefficient was determined to be in the order of 10-11. These results show a low probability of CH3I to be taken up by halide-containing aerosols. These data are crucial for completing the iodine atmospheric chemical scheme.


Asunto(s)
Yodo , Ozono , Neoplasias de la Tiroides , Atmósfera , Humanos , Radioisótopos de Yodo , Cloruro de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA