Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Appl Toxicol ; 43(10): 1410-1420, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36579752

RESUMEN

Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, ß-, and γ-cyclodextrins, each with its own particularities. They can undergo surface modifications to improve their performances. Furthermore, their drug inclusion complexes can be made by various methods, including lyophilization, spray drying, magnetic stirring, kneading, and others. Cyclodextrins can solve several problems in drug stability when incorporated into dosage forms (including tablets, gels, films, nanoparticles, and suppositories) and allow better topical biological effects of drugs at administration sites such as skin, eyeballs, and oral, nasal, vaginal, and rectal cavities. However, as they are nanostructured systems and some of them can cause mild toxicity depending on the application site, they must be evaluated for their nanotoxicology and nanosafety aspects. Moreover, there is evidence that they can cause severe ototoxicity, killing cells from the ear canal even when applied by other administration routes. Therefore, they should be avoided in otologic administration and should have their permeation/penetration profiles and the in vivo hearing system integrity evaluated to certify that they will be safe and will not cause hearing loss.


Asunto(s)
Productos Biológicos , Ciclodextrinas , Femenino , Humanos , Ciclodextrinas/toxicidad , Preparaciones Farmacéuticas , Disponibilidad Biológica , Solubilidad
2.
Pharm Dev Technol ; 27(5): 615-624, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35786299

RESUMEN

Zidovudine (AZT) has been widely used alone or in combination with other antiretroviral drugs for the treatment of human immunodeficiency virus. Its erratic oral bioavailability necessitates frequent administration of high doses, resulting in severe side effects. In this study, the design of mucoadhesive solid dispersions (SDs) based on chitosan (CS) and hypromellose phthalate (HP) was rationalized as a potential approach to modulate AZT physicochemical and pharmaceutical properties. SDs were prepared at different drug:polymer ratios, using an eco-friendly technique, which avoids the use of organic solvents. Particles with diameter from 56 to 73 µm and negative zeta potentials (-27 to -32 mV) were successfully prepared, achieving high drug content. Infrared spectroscopy revealed interactions between polymers but no interactions between the polymers and AZT. Calorimetry and X-ray diffraction analyses showed that AZT was amorphized into the SDs. The mucoadhesive properties of SDs were evidenced, and the control of AZT release rates from the matrix was achieved, mainly in acid media. The simple, low-cost, and scalable technology proposed for production of SDs as a carrier platform for AZT is an innovative approach, and it proved to be a feasible strategy for modulation the physico-chemical, mucoadhesive, and release properties of the drug.


Asunto(s)
Quitosano , Quitosano/química , Portadores de Fármacos/química , Humanos , Derivados de la Hipromelosa , Metilcelulosa/análogos & derivados , Polímeros/química , Solubilidad , Zidovudina/química
3.
Biomed Chromatogr ; 35(5): e5054, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33314174

RESUMEN

Dexamethasone acetate (DEX), a potent anti-inflammatory, is used primarily in the treatment of inflammatory and autoimmune diseases. It was incorporated in CETETH 20 (polyoxyethylene 20 cetyl alcohol)-based liquid crystalline systems to enhance the purpose of the drug. Concomitant with the pharmaceutical technology performed, a HPLC method was developed and validated for the quantification of dexamethasone acetate in CETETH 20-based liquid crystalline systems for the evaluation of the drug in the new matrix. The method was performed using a C18 column with acetonitrile:methanol:water (35:35:30, v/v/v) as the mobile phase at a flow rate of 0.8 mL min-1 at 239 nm. The method was linear in the range of 1-25 µg mL-1 ; the limit of quantification and limit of detection were 0.05 and 0.16 µg mL-1 , respectively; the accuracy of the method was 99.92% (relative standard deviation < 1%), and it presented intra-day and inter-day precision with deviations less than 1%. In this context, the method was successfully used to determine the incorporation efficiency of DEX in CETETH 20-based liquid crystalline systems and can be easily used by pharmaceutical companies and laboratories around the world.


Asunto(s)
Antiinflamatorios/análisis , Cromatografía Líquida de Alta Presión/métodos , Dexametasona/análogos & derivados , Cristales Líquidos/química , Dexametasona/análisis
4.
Drug Dev Ind Pharm ; 47(12): 1904-1914, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35236214

RESUMEN

Nanostructured polyelectrolyte complexes (nano PECs) were obtained by polyelectrolyte complexation technique from chitosan (CS) and sodium alginate (SA). Different polymer proportions were tested, as well as the addition order and homogenization type, to assess the influence on the nano PECs characteristics. The spherical shape and nanometric scale of the systems were observed by scanning electron microscopy (SEM). Nano PECs size, PDI, and zeta potential (ZP) ranged from 252 to 616 nm, from 0.22 to 0.73 and -50 to 30 mV, respectively. The increase of polymer proportion and the ultra-turrax homogenization led to the enlargement of particles size and PDI. However, no influence was observed on the ZP. The NP1s-Rb and NP4s-Rb, obtained through the sonicator with rifampicin (RIF) added before the CS and SA complexation, were selected due to the most promising characteristics of diameter (301 and 402 nm), PDI (0.27 and 0.26), and RIF incorporation (78 and 69%). The release profiles of RIF incorporated in both nano PECs were similar, with a sustained release of the drug for 180 min in phosphate buffer pH 7.2. The Weibull and the Korsmeyer-Peppas models better describe the RIF release from NP1s-Rb and NP4s-Rb, respectively, demonstrating that the release process was driven by different mechanism according to the particle composition. The nano PECs were lyophilized to prolong it stability and for possible nebulization. The addition of dextrose to the system allowed for resuspension after lyophilization. Therefore, with the results obtained, the incorporation of RIF in nano PECs based on CS and SA presents a promising system for the treatment of tuberculosis.


Asunto(s)
Quitosano , Tuberculosis , Alginatos/química , Quitosano/química , Portadores de Fármacos/química , Humanos , Polielectrolitos/química , Polímeros , Rifampin
5.
Drug Dev Ind Pharm ; 46(2): 236-245, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928345

RESUMEN

Nanoparticles based on gellan gum/pectin blends were designed for colon-targeted release of resveratrol (RES). Their impact on drug release rates and permeability were evaluated using Caco-2 cell model and mucus secreting triple co-culture model. Polymeric nanoparticles (PNP) were successfully prepared by nebulization/ionotropic gelation, achieving high drug loading (>80%). PNP were spherical with a low positive charge density (+5mV) and exhibited diameters of around 330 nm. Developed PNP were able to promote effective modulation of drug release rates, so that only 3% of RES was released in acidic media over 2 h, and, in pH 6.8, the drug was released in a sustained manner, reaching 85% in 30 h. The permeability of RES-loaded PNP in the Caco-2 model was 0.15%, while in the triple co-culture model, in the presence of mucus, it reached 5.5%. The everted gut sac experiment corroborated the low permeability of RES-loaded PNP in the presence or absence of mucus and highlighted their high ability to interact with the intestinal tissue. Results indicate that the novel PNP developed in this work are safe and promising carriers for controlled delivery of RES at the colon.


Asunto(s)
Colon/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Pectinas/química , Polisacáridos Bacterianos/química , Resveratrol/administración & dosificación , Resveratrol/química , Administración Oral , Animales , Células CACO-2 , Línea Celular Tumoral , Portadores de Fármacos/química , Liberación de Fármacos , Células HT29 , Humanos , Concentración de Iones de Hidrógeno , Mucosa Intestinal/metabolismo , Masculino , Moco/metabolismo , Tamaño de la Partícula , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
6.
Drug Dev Ind Pharm ; 43(10): 1656-1668, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28489424

RESUMEN

This work aimed to develop a calcium alginate hydrogel as a pH responsive delivery system for polymyxin B (PMX) sustained-release through the vaginal route. Two samples of sodium alginate from different suppliers were characterized. The molecular weight and M/G ratio determined were, approximately, 107 KDa and 1.93 for alginate_S and 32 KDa and 1.36 for alginate_V. Polymer rheological investigations were further performed through the preparation of hydrogels. Alginate_V was selected for subsequent incorporation of PMX due to the acquisition of pseudoplastic viscous system able to acquiring a differential structure in simulated vaginal microenvironment (pH 4.5). The PMX-loaded hydrogel (hydrogel_PMX) was engineered based on polyelectrolyte complexes (PECs) formation between alginate and PMX followed by crosslinking with calcium chloride. This system exhibited a morphology with variable pore sizes, ranging from 100 to 200 µm and adequate syringeability. The hydrogel liquid uptake ability in an acid environment was minimized by the previous PECs formation. In vitro tests evidenced the hydrogels mucoadhesiveness. PMX release was pH-dependent and the system was able to sustain the release up to 6 days. A burst release was observed at pH 7.4 and drug release was driven by an anomalous transport, as determined by the Korsmeyer-Peppas model. At pH 4.5, drug release correlated with Weibull model and drug transport was driven by Fickian diffusion. The calcium alginate hydrogels engineered by the previous formation of PECs showed to be a promising platform for sustained release of cationic drugs through vaginal administration.


Asunto(s)
Alginatos/química , Cloruro de Calcio/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polielectrolitos/química , Polímeros/química , Administración Intravaginal , Alginatos/administración & dosificación , Química Farmacéutica , Difusión , Liberación de Fármacos , Ácido Glucurónico/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/administración & dosificación , Ácidos Hexurónicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/administración & dosificación , Concentración de Iones de Hidrógeno
7.
J Nanosci Nanotechnol ; 16(2): 1248-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27433574

RESUMEN

Mucoadhesive drug delivery systems have been widely investigated as a strategic to allow the raising of intestinal residence time of drugs and the intimate contact with the intestinal mucosa, both factors that increase the local concentration gradient. Zidovudine (AZT) mucoadhesive nanostructured polyelectrolyte complexes were obtained by chitosan (CS)-hypromellose phthalate (HP) interactions in order to favor the permeability through biological membranes and the AZT absorption. Particle size and morphology analyses showed the obtaining of nanoparticulate delivery systems, with AZT loaded about of 65%. The characterization by DSC, X-ray diffraction and FTIR showed a new crystalline structure formed in which the drug remained molecularly dispersed, without changing this structure. The reduced release rates in the simulated gastric medium and the control of release rates in simulated intestinal medium of AZT were demonstrated by in vitro release studies. The nanoparticles liquid uptake ability associated to the mucoadhesiveness by electronic interaction between the particles and mucus revealed that the drug delivery system developed in this work is a promising approach to improve the permeation of this drug throughout the intestinal mucosa.


Asunto(s)
Portadores de Fármacos , Mucinas/química , Nanoestructuras/química , Zidovudina , Animales , Quitosano/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Permeabilidad , Zidovudina/química , Zidovudina/farmacocinética
8.
Molecules ; 21(2)2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26901183

RESUMEN

Methotrexate (MTX) is an immunosuppressive drug for systemic use in the treatment of skin diseases, however, MTX presents a number of side effects, such as hepatotoxicity. To overcome this limitation, this study developed skin MTX delivery surfactant systems, such as a microemulsion (ME) and a liquid crystalline system (LCS), consisting of a glycol copolymer-based silicone fluid (SFGC) as oil phase, polyether functional siloxane (PFS) as surfactant, and carbomer homopolymer type A (C971) dispersion at 0.5% (wt/wt) as aqueous phase. Polarized light microscopy and small-angle X-ray scattering evidenced the presence of hexagonal and lamellar LCSs, and also a ME. Texture profile and in vitro bioadhesion assays showed that these formulations are suitable for topical application, showing interesting hardness, adhesiveness and compressibility values. Rheology analysis confirmed the Newtonian behaviour of the ME, whereas lamellar and hexagonal LCSs behave as pseudoplastic and dilatant non-Newtonian fluids, respectively. In vitro release profiles indicated that MTX could be released in a controlled manner from all the systems, and the Weibull model showed the highest adjusted coefficient of determination. Finally, the formulations were not cytotoxic to the immortalized human keratinocyte line HaCaT. Therefore, these bioadhesive surfactant systems established with PFS and C971 have great potential as skin delivery systems.


Asunto(s)
Metotrexato/farmacología , Piel/efectos de los fármacos , Tensoactivos/química , Administración Tópica , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Metotrexato/química , Microscopía de Polarización , Reología , Dispersión del Ángulo Pequeño , Porcinos
9.
J Nanosci Nanotechnol ; 15(1): 817-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328446

RESUMEN

Nanotechnology offers advantages for new drug delivery design by providing drug targeting while minimizing the side effects. Polyoxyethylene 20 cetyl alcohol (CETETH-20) is a surfactant that may form nanostructured systems, such as liquid crystals, when in contact with water/oil, which are structurally similar to biological membranes and may improve skin interaction. The aim of this study was to develop and characterize CETETH 20-based nanostructured systems by combining CETETH-20 with water and different oily phases, including PEG-12-dimethicone for topical drug administration. The systems were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheology, texture profile analyses (TPA), in vitro cytotoxicity and histopathological analyses of rabbits' skin. Lamellar, hexagonal and cubic phases were identified and their viscoelastic moduli varied according to each phase. The stiffness of the cubic phase was 3-fold higher and twice more adhesive than the hexagonal phase. The formulations did not affect the normal macrophages cells, neither promoted skin irritation. They were spontaneously obtained by simply mixing the components, which corroborates for an ease scaled-up. These results suggest that systems composed of CETETH 20, PEG-12-dimethicone and water are a promising new approach for designing nanostructured topical drug delivery systems.


Asunto(s)
Administración Tópica , Portadores de Fármacos , Nanopartículas , Siliconas , Tensoactivos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cetomacrogol/administración & dosificación , Cetomacrogol/química , Cetomacrogol/toxicidad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Emulsiones/química , Alcoholes Grasos/administración & dosificación , Alcoholes Grasos/química , Alcoholes Grasos/toxicidad , Masculino , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanopartículas/toxicidad , Ácido Oléico/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/toxicidad , Conejos , Siliconas/administración & dosificación , Siliconas/química , Siliconas/toxicidad , Piel/efectos de los fármacos , Piel/patología , Pruebas de Irritación de la Piel , Tensoactivos/administración & dosificación , Tensoactivos/química , Tensoactivos/toxicidad
10.
J Nanosci Nanotechnol ; 15(1): 865-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26328451

RESUMEN

Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT administration.


Asunto(s)
Fármacos Anti-VIH/química , Quitosano/química , Portadores de Fármacos/química , Nanopartículas/química , Zidovudina/química , Administración Intranasal , Animales , Fármacos Anti-VIH/farmacocinética , Portadores de Fármacos/farmacocinética , Mucinas/metabolismo , Mucosa Nasal/metabolismo , Resonancia Magnética Nuclear Biomolecular , Permeabilidad , Porcinos , Zidovudina/farmacocinética
11.
Int J Biol Macromol ; 263(Pt 1): 130272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373560

RESUMEN

Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.0 ± 2.75 nm and 314.0 ± 0.01 nm, polydispersity index of 0.182 ± 0.01 e 0.288 ± 0.01, and encapsulation efficiency of 29.36 ± 0.67 e 60.35 ± 0.27 mV, for NPs without (NP_BVZ) and with surface modification (NP_BVZ + CS). The results showed a good ability of nanoparticles with surface modification to modulate the NPs biological properties.


Asunto(s)
Quitosano , Nanopartículas , Polisacáridos Bacterianos , Portadores de Fármacos , Bevacizumab/farmacología
12.
Drug Dev Ind Pharm ; 39(11): 1750-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23216218

RESUMEN

BACKGROUND: Hydrogels are widely used for cutaneous formulations; thereby comparing the bioadhesive properties of polymers with a view to prolong the residence time of topical drugs on the skin would be very useful to design novel topical drug delivery systems. AIM: The objective of this study was to correlate data from rheological studies and texture profile analysis, with bioadhesion on the skin. METHODS: Polyacrylic acid polymers used were carbomer homopolymer type A (C971) and type B (C974), and polycarbophil (PP) dispersed in water at various concentrations (0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 5.0%, w/v). Rheological, texture, and bioadhesive properties were determined to compare the hydrogels. RESULTS: Rheological analysis showed that all samples exhibited pseudoplastic behavior with thixotropy. Texture profile analysis showed that compressibility, hardness, and adhesiveness of the hydrogels were dependent on the polymer concentration, and the cohesion values were high. Bioadhesion of C974 and PP at 0.5 and 2% was of the same magnitude, while all samples of C971 had lower values. The bioadhesion of 5% C974 was the highest, while that 5% PP was lower, possibly because PP showed the greatest hardness and this rigidity may decrease the interaction of the polymer with the skin. CONCLUSION: A comprehensive comparative rheological and textural analyses of several polymers for topical systems were undertaken in terms of their bioadhesion. Therefore, it is possible to conclude that these polymers can be used for optimization of drug delivery systems on the skin.


Asunto(s)
Resinas Acrílicas/química , Fármacos Dermatológicos/química , Sistemas de Liberación de Medicamentos , Vehículos Farmacéuticos/química , Piel/química , Acrilatos/química , Adhesividad , Administración Cutánea , Animales , Fenómenos Químicos , Fármacos Dermatológicos/administración & dosificación , Oído , Módulo de Elasticidad , Dureza , Hidrogeles , Fenómenos Mecánicos , Sus scrofa , Viscosidad
13.
Crit Rev Anal Chem ; : 1-9, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990513

RESUMEN

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug. In addition, there is a constant search for analytical methods to identify and quantify this drug. Numerous high-performance liquid chromatography analytical techniques, mass spectrometry and immunoassay techniques have been employed efficiently in an attempt to develop increasingly sensitive analytical methods. Thus, this review sought to bring together current and relevant scientific works involving rapamycin and; besides analytical methods more used for quantification of this molecule.

14.
Parasit Vectors ; 16(1): 303, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644584

RESUMEN

BACKGROUND: The successful use of semiochemicals to attract insects to traps is based on research on the most suitable compounds and their release profiles over time. Based on the group's promising results, matrices with a more adequate release profile and more eco-friendly properties for the release of 1-hexanol were developed. To use a more suitable prototype in the field, the most promising systems were added to a capsule and evaluated in a wind tunnel. Behavioral experiments were performed using the sand fly species, Lutzomyia longipalpis, to evaluate the efficacy of the proposed system. METHODS: Different delivery systems were developed by varying the polymer (gellan gum and pectin) ratio, crosslinker (aluminum chloride) concentration, and glutaraldehyde removal.The delivery systems were loaded with 1-hexanol, and their release profiles were evaluated using gravimetric analysis under ambient and high-humidity conditions. When the matrix system was placed inside a plastic container, modulations in the active release profile were observed and the system could be reused. Actid attraction behaviors of the sand fly species, Lu. longipalpis, were evaluated in a wind tunnel when exposed to 1-hexanol-loaded release systems at different times. RESULTS: Among the four formulations evaluated, System 2 (gellan gum and pectin in a 1:1 ratio with 5% aluminum chloride) exhibited the most promising release profile, with greater uniformity and longer compound release time. The maximum 1-hexanol release uniformity was achieved over a longer time, mainly every 24 h, under both ambient and high-humidity conditions. System 2 can be reused at least once with the same structure. The wind tunnel trials exhibited efficient activation and attraction of Lu. longipalpis to 1-hexanol after 24, 48, and 72 h in System 2 placed inside the capsules. CONCLUSIONS: The polymeric matrix supplemented with 1-hexanol and introduced in plastic capsules showed promising results in attracting sand flies. This system can be used as a solution for other attractive compounds as well as in other applications where their release needs to be controlled or prolonged.


Asunto(s)
Phlebotomus , Psychodidae , Animales , Cloruro de Aluminio , Cápsulas , Polímeros , Plásticos , Pectinas
15.
J Nanosci Nanotechnol ; 12(11): 8513-21, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23421238

RESUMEN

In this work, the antiretroviral zidovudine was encapsulated on biodegradable poly(L-lactide) (PLA) or poly(L-lactide)-poly(ethylene glycol) (PLA-PEG)-blend nanoparticles by the double-emulsion solvent-evaporation method. The PLA-PEG blend was obtained by the physical mixture of the isolated polymers in organic solvent, whose PEG content ranges from 5 to 50 g in the blends. The physicochemical characteristics of the nanoparticles were evaluated applying particle-size and zeta-potential analyses, scanning electron microscopy, differential scanning calorimetry and Fourier-transform infrared spectroscopy. The release rate of zidovudine from the nanoparticles was investigated as well. The drug encapsulation efficiencies were around 50%, and the mean diameters of the nanoparticles were less than 400 nm. The PEG presence influenced all of the analyzed physicochemical parameters. The amount of drug released increases with the PEG presence in the blend. Therefore, the investigated nanoparticles are very promising carriers for zidovudine.


Asunto(s)
Lactatos/química , Nanocápsulas/química , Nanocápsulas/ultraestructura , Polietilenglicoles/química , Zidovudina/química , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/química , Difusión , Ensayo de Materiales , Zidovudina/administración & dosificación
16.
Pharmaceutics ; 14(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432681

RESUMEN

Liposomes functionalized with cell-penetrating peptides are a promising strategy to deliver insulin through the nasal route. A hydrogel based on hydroxyethylcellulose (HEC) aqueous solution was prepared, followed by a subsequent addition of liposomes containing insulin solution functionalized with trans-activator of transcription protein of HIV-1 (TAT) or Penetratin (PNT). The formulations were characterized for rheological behavior, mucoadhesion, syringeability, in vitro release and in vivo efficacy. Rheological tests revealed non-Newtonian fluids with pseudoplastic behavior, and the incorporation of liposomes (HLI, HLITAT and HLIPNT) in hydrogels did not alter the behavior original pseudoplastic characteristic of the HEC hydrogel. Pseudoplastic flow behavior is a desirable property for formulations intended for the administration of drugs via the nasal route. The results of syringeability and mucoadhesive strength from HEC hydrogels suggest a viable vehicle for nasal delivery. Comparing the insulin release profile, it is observed that HI was the system that released the greatest amount while the liposomal gel promoted greater drug retention, since the liposomal system provides an extra barrier for the release through the hydrogel. Additionally, it is observed that both peptides tested had an impact on the insulin release profile, promoting a slower release, due to complexation with insulin. The in vitro release kinetics of insulin from all formulations followed Weibull's mathematical model, reaching approximately 90% of release in the formulation prepared with HEC-based hydrogels. Serum insulin levels and the antihyperglycemic effects suggested that formulations HI and HLI have potential as carriers for insulin delivery by the nasal pathway, a profile not observed when insulin was administered by subcutaneous injection or by the nasal route in saline. Furthermore, formulations functionalized with TAT and PNT can be considered promoters of late and early absorption, respectively.

17.
Crit Rev Anal Chem ; 52(5): 897-905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33138632

RESUMEN

The drug rapamycin is a potent inhibitor of the mTOR complex, acting directly in the signaling cascade of this protein complex; interrupting cell proliferation, in addition to being an extremely efficient immunosuppressant. Currently this drug is being used in several types of cancer. Rapamycin has been a target of great interest within nanomedicine involving nanostructured systems for drug delivery aiming to increase the bioactivity and bioavailability of this drug. In addition, there is a constant search for analytical methods to identify and quantify this drug. Numerous high-performance liquid chromatography analytical techniques, mass spectrometry and immunoassay techniques have been employed efficiently in an attempt to develop increasingly sensitive analytical methods. Thus, this review sought to bring together current and relevant scientific works involving rapamycin and; besides analytical methods more used for quantification of this molecule.


Asunto(s)
Neoplasias , Sirolimus , Humanos , Espectrometría de Masas , Preparaciones Farmacéuticas , Transducción de Señal , Sirolimus/química , Sirolimus/farmacología
18.
Pharmaceutics ; 13(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808670

RESUMEN

Polymer blends of gellan gum (GG)/retrograded starch(RS) and GG/pectin (P) were cross-linked with calcium, aluminum, or both to prepare mucoadhesive microparticles as oral carriers of drugs or nano systems. Cross-linking with different cations promoted different effects on each blend, which can potentially be explored as novel strategies for modulating physical-chemical and mucoadhesive properties of microparticles. Particles exhibited spherical shapes, diameters from 888 to 1764 µm, and span index values lower than 0.5. Blends of GG:P cross-linked with aluminum resulted in smaller particles than those obtained by calcium cross-linking. GG:RS particles exhibited larger sizes, but cross-linking this blend with calcium promoted diameter reduction. The uptake rates of acid medium were lower than phosphate buffer (pH 6.8), especially GG:RS based particles cross-linked with calcium. On the other hand, particles based on GG:P cross-linked with calcium absorbed the highest volume of acid medium. The percentage of systems erosion was higher in acid medium, but apparently occurred in the outermost layer of the particle. In pH 6.8, erosion was lower, but caused expressive swelling of the matrixes. Calcium cross-linking of GG:RS promoted a significantly reduction on enzymatic degradation at both pH 1.2 and 6.8, which is a promising feature that can provide drug protection against premature degradation in the stomach. In contrast, GG:P microparticles cross-linked with calcium suffered high degradation at both pH values, an advantageous feature for quickly releasing drugs at different sites of the gastrointestinal tract. The high mucoadhesive ability of the microparticles was evidenced at both pH values, and the Freundlich parameters indicated stronger particle-mucin interactions at pH 6.8.

19.
Carbohydr Polym ; 254: 117444, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357914

RESUMEN

Nanostructured polyelectrolyte complexes (nano PECs) based on biopolymers are an important technological strategy to target drugs to the action and/or absorption site in a more effective way. In this work, computational studies were performed to predict the ionization, spatial arrangement and interaction energies of chitosan (CS), hyaluronic acid (HA), and hypromellose phthalate (HP), for the design of nano PEC carriers for methotrexate (MTX). The optimal pH range (5.0-5.5) for preparing nano PECs was selected by experimental and computational methodologies, favoring the polymers interactions. CS, HA, HP and MTX addition order was also rationalized, maximizing their interactions and MTX entrapment. Spherical nano-sized particles (256-575 nm, by dynamic light scattering measurement) with positive surface charge (+25.5 to +29.2 mV) were successfully prepared. The MTX association efficiency ranged from 20 to 32 %. XRD analyses evidenced the formation of a new material with an organized structure, in relation to raw polymers.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Quitosano/química , Portadores de Fármacos , Ácido Hialurónico/química , Metotrexato/química , Metilcelulosa/análogos & derivados , Nanoestructuras/química , Composición de Medicamentos/métodos , Humanos , Concentración de Iones de Hidrógeno , Metilcelulosa/química , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Polielectrolitos/química , Soluciones , Electricidad Estática , Termodinámica
20.
Crit Rev Anal Chem ; 51(5): 445-453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32295395

RESUMEN

Bevacizumab is a chimeric monoclonal human-murine antibody originated from murine monoclonal antibody (muMAb A4.6.1) with the human immunoglobulin IgG1. BVZ binds the extracellular portion of vascular endothelial growth factor receptors (VEGFR), which have tyrosine kinase activity. The mechanism of action of BVZ involves binding to VEGFR, Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2), inducing homodimerization of two receptor subunits, and, consequently, autophosphorylation of their tyrosine kinase domains located inside the cytoplasm. With the advent of nanostructured systems it is increasingly necessary to look for safe analytical methods, ensuring the reliability of the results obtained by them, becoming essential to ensure the quality of medicines. In this work, the incorporation of bevacizumab in to different drug delivery systems was presented. Moreover, detailed investigation was performed about methods for qualitative and quantitative analyses of bevacizumab, including, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, liquid chromatography, mass spectrometry and ELISA were used for this purpose. Thus, this review was performed to evaluate the benefits of bevacizumab carried by nanostructured systems and the analytical methods available for detection and quantification of these drugs.


Asunto(s)
Inhibidores de la Angiogénesis/análisis , Bevacizumab/análisis , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Animales , Bevacizumab/administración & dosificación , Bevacizumab/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Fosforilación , Reproducibilidad de los Resultados , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA