Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Blood Cancer ; : e30419, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194624

RESUMEN

Complex lymphatic anomalies are debilitating conditions characterized by aberrant development of the lymphatic vasculature (lymphangiogenesis). Diagnosis is typically made by history, examination, radiology, and histologic findings. However, there is significant overlap between conditions, making accurate diagnosis difficult. Recently, genetic analysis has been offered as an additional diagnostic modality. Here, we describe four cases of complex lymphatic anomalies, all with PIK3CA variants but with varying clinical phenotypes. Identification of PIK3CA resulted in transition to a targeted inhibitor, alpelisib. These cases highlight the genetic overlap between phenotypically diverse lymphatic anomalies.

2.
Acta Neuropathol ; 136(1): 89-110, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752550

RESUMEN

The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.


Asunto(s)
Envejecimiento , Citocinas/metabolismo , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/fisiopatología , Células Mieloides/patología , Neutrófilos/patología , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Médula Ósea/patología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Trastornos Neurológicos de la Marcha/etiología , Fuerza de la Mano/fisiología , Hemoglobinas/metabolismo , Suspensión Trasera/fisiología , Humanos , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Immunol ; 196(8): 3318-30, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962232

RESUMEN

Aging is associated with an increase in basal inflammation in the CNS and an overall decline in cognitive function and poorer recovery following injury. Growing evidence suggests that leukocyte recruitment to the CNS is also increased with normal aging, but, to date, no systematic evaluation of these age-associated leukocytes has been performed. In this work, the effect of aging on CNS leukocyte recruitment was examined. Aging was associated with more CD45(high) leukocytes, primarily composed of conventional CD8(+) T cells. These results were strain independent and seen in both sexes. Intravascular labeling and immunohistology revealed the presence of parenchymal CD8(+) T cells in several regions of the brain, including the choroid plexus and meninges. These cells had effector memory (CD44(+)CD62L(-)) and tissue-resident phenotypes and expressed markers associated with TCR activation. Analysis of TCRvß repertoire usage suggested that entry into the CNS is most likely stochastic rather than Ag driven. Correlational analyses revealed a positive association between CD8 T cell numbers and decreased proinflammatory function of microglia. However, the effects of cerebral ischemia and ex vivo stimulation of these cells dramatically increased production of TNF, IFN-γ, and MCP-1/CCL2. Taken together, we identified a novel population of resident memory, immunosurveillant CD8 T cells that represent a hallmark of CNS aging and appear to modify microglia homeostasis under normal conditions, but are primed to potentiate inflammation and leukocyte recruitment following ischemic injury.


Asunto(s)
Envejecimiento/inmunología , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Infarto de la Arteria Cerebral Media/inmunología , Accidente Cerebrovascular/inmunología , Factores de Edad , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Quimiocina CCL2/biosíntesis , Modelos Animales de Enfermedad , Femenino , Receptores de Hialuranos/metabolismo , Memoria Inmunológica/inmunología , Vigilancia Inmunológica/inmunología , Infarto de la Arteria Cerebral Media/patología , Inflamación/inmunología , Interferón gamma/biosíntesis , Selectina L/metabolismo , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/patología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Accidente Cerebrovascular/patología , Factor de Necrosis Tumoral alfa/biosíntesis
4.
J Neuroinflammation ; 12: 106, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26022493

RESUMEN

BACKGROUND: The brain's initial innate response to stroke is primarily mediated by microglia, the resident macrophage of the CNS. However, as early as 4 h after stroke, the blood-brain barrier is compromised and monocyte infiltration occurs. The lack of discriminating markers between these two myeloid populations has led many studies to generate conclusions based on the grouping of these two populations. A growing body of evidence now supports the distinct roles played by microglia and monocytes in many disease models. METHODS: Using a flow cytometry approach, combined with ex-vivo functional assays, we were able to distinguish microglia from monocytes using the relative expression of CD45 and assess the function of each cell type following stroke over the course of 7 days. RESULTS: We found that at 72 h after a 90-min middle cerebral artery occlusion (MCAO), microglia populations decrease whereas monocytes significantly increase in the stroke brain compared to sham. After stroke, BRDU incorporation into monocytes in the bone marrow increased. After recruitment to the ischemic brain, these monocytes accounted for nearly all BRDU-positive macrophages. Inflammatory activity peaked at 72 h. Microglia produced relatively higher reactive oxygen species and TNF, whereas monocytes were the predominant IL-1ß producer. Although microglia showed enhanced phagocytic activity after stroke, monocytes had significantly higher phagocytic capacity at 72 h. Interestingly, we found a positive correlation between TNF expression levels and phagocytic activity of microglia after stroke. CONCLUSIONS: In summary, the resident microglia population is vulnerable to the effects of severe ischemia, show compromised cell cycle progression, and adopt a largely pro-inflammatory phenotype after stroke. Infiltrating monocytes are primarily involved with early debris clearance of dying cells. These findings suggest that the early wave of infiltrating monocytes may be beneficial to stroke repair and future therapies aimed at mitigating microglia cell death may prove more effective than attempting to elicit targeted anti-inflammatory responses from damaged cells.


Asunto(s)
Microglía/patología , Microglía/fisiología , Monocitos/patología , Monocitos/fisiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Barrera Hematoencefálica/fisiología , Movimiento Celular/fisiología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Fagocitosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Front Immunol ; 9: 610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623082

RESUMEN

With the advent of checkpoint blockade therapies, immunotherapy is now a critical modality for the treatment of some cancers. While some patients respond well to checkpoint blockade, many do not, necessitating the need for other forms of therapy. Vaccination against malignancy has been a long sought goal of science. For cancers holding a microbial etiology, vaccination has been highly effective in reducing the incidence of disease. However, vaccination against established malignancy has been largely disappointing. In this review, we discuss efforts to develop diverse vaccine modalities in the treatment of cancer with a particular focus on melanoma. Recent work has suggested that vaccines targeting patient-specific tumor mutations may be more relevant than those targeting unmutated proteins. Nonetheless, tumor cells utilize many strategies to evade host immunity. It is likely that the full potential of cancer vaccination will only be realized when vaccines are combined with other therapies targeting tumor immunoevasive mechanisms. By modulating inhibitory molecules, regulatory immune cells, and the metabolic resources and demands of T cells, scientists and clinicians can ensure vaccine-stimulated T cells are fully functional within the immunosuppressive tumor microevironment.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Melanoma/terapia , Animales , Antígenos de Neoplasias/inmunología , Terapia Combinada , Receptores Coestimuladores e Inhibidores de Linfocitos T/inmunología , Humanos , Melanoma/inmunología , Escape del Tumor , Microambiente Tumoral , Vacunación
6.
Front Immunol ; 8: 1993, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29387061

RESUMEN

Despite many years of research, cancer vaccines have largely been ineffective in the treatment of established cancers. Many barriers to immune-mediated destruction of malignant cells exist, and these likely limit the efficacy of cancer vaccines. In this study, we sought to enhance the efficacy of a cytomegalovirus (CMV)-based vaccine targeting melanoma by combining vaccination with other forms of immunotherapy. Adoptive cell therapy in humans and in animal models has been shown to be effective for tumor regression. Thus, in this study, we assessed whether CMV-based vaccines in combination with adoptively transferred antitumor T cells could provide greater antitumor protection than either therapy alone. Our results show that adoptive cell therapy greatly enhanced the antitumor effects of CMV-based vaccines targeting the foreign model antigen, OVA, or the melanoma differentiation antigen, gp100. Combination adoptive cell therapy and vaccination induced the upregulation of the inhibitory ligands, PD-L1, and Qa-1b, on B16 tumor cells. This expression paralleled the infiltration of tumors by vaccine-stimulated T cells which also expressed high levels of the receptors PD-1 and NKG2A/C/E, suggesting a potential mechanism of tumor immune evasion. Surprisingly, therapeutic blockade of the PD-1/PD-L1 and NKG2A/Qa-1b axes did not delay tumor growth following vaccination, suggesting that the presence of inhibitory ligands within malignant tissue may not be an effective biomarker for successful combination therapy with CMV-based vaccines. Overall, our studies show that therapeutic CMV-based vaccines in combination with adoptive T cell transfer alone are effective for tumor rejection.

7.
Oncoimmunology ; 5(1): e1056974, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26942064

RESUMEN

Cancer vaccines that have utilized various immunization strategies to induce antitumor immunity have largely failed in clinical settings. We have recently developed a cancer vaccine using a cytomegalovirus (CMV) based vector that expressed a modified melanoma antigen that elicited a robust antitumor CD8+ T cell response and tumor rejection.

8.
Cancer Immunol Res ; 3(5): 536-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25633711

RESUMEN

The presence of tumor-infiltrating CD8(+) T cells is associated with tumor regression and better prognosis. Cytomegalovirus (CMV) infection elicits a robust and long-lasting CD8(+) T-cell response, which makes CMV a potentially promising vaccine vector against cancer. In the current study, we used recombinant murine CMV (MCMV) strains as prophylactic and therapeutic vaccines in an aggressive B16 lung metastatic melanoma model. Immunization with MCMV-expressing ovalbumin (OVA) induced a potent OVA-specific CD8(+) T-cell response and was effective in protecting mice from OVA-expressing B16 melanoma in an antigen-dependent manner. We engineered MCMV to express a modified B16 melanoma antigen gp100 (MCMV-gp100KGP). Immunization with MCMV-gp100KGP was highly effective in overcoming immune tolerance to self-antigen and induced a strong, long-lasting gp100-specific CD8(+) T-cell response even in the presence of preexisting anti-CMV immunity. Furthermore, both prophylactic and therapeutic vaccinations of mice with MCMV-gp100KGP effectively protected mice from highly aggressive lung B16-F10 melanoma, and the protection was mediated by gp100-specific CD8(+) T cells. We showed that MCMV is a superior vaccine vector compared with a commonly used vesicular stomatitis virus vector. Collectively, our studies demonstrate that CMV is a promising vaccine vector to prevent and treat tumors.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Citomegalovirus/inmunología , Neoplasias Pulmonares/prevención & control , Melanoma Experimental/prevención & control , Antígeno gp100 del Melanoma/inmunología , Animales , Femenino , Neoplasias Pulmonares/secundario , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ovalbúmina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA