Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Oral Health ; 23(1): 56, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721114

RESUMEN

BACKGROUND: A rigorous search for alternatives to autogenous bone grafts to avoid invasiveness at the donor site in the treatment of maxillomandibular bone defects. Researchers have used alloplastic, allogeneic, and xenogeneic bone graft substitutes in clinical studies with varying degrees of success, although their in vitro effects on stem cells remain unclear. Dental pulp stem cells (DPSCs) can potentially enhance the bone regeneration of bone graft substitutes. The present in vitro study investigates the osteogenic capability of DPSCs on alloplastic (biphasic calcium phosphate [BCP]), allogeneic (freeze-dried bone allografts [FDBAs]), and xenogeneic (deproteinized bovine bone mineral [DBBM]) bone grafts. METHODS: Human DPSCs were seeded on 0.5 mg/ml, 1 mg/ml, and 2 mg/ml of BCP, FDBA, and DBBM to evaluate the optimal cell growth and cytotoxicity. Scaffolds and cell morphologies were analyzed by scanning electron microscopy (SEM). Calcein AM and cytoskeleton staining were performed to determine cell attachment and proliferation. Alkaline phosphatase (ALP) and osteogenesis-related genes expressions was used to investigate initial osteogenic differentiation. RESULTS: Cytotoxicity assays showed that most viable DPSCs were present at a scaffold concentration of 0.5 mg/ml. The DPSCs on the DBBM scaffold demonstrated a significantly higher proliferation rate of 214.25 ± 16.17 (p < 0.001) cells, enhancing ALP activity level and upregulating of osteogenesis-related genes compared with other two scaffolds. CONCLUSION: DBBP scaffold led to extremely high cell viability, but also promoted proliferation, attachment, and enhanced the osteogenic differentiation capacity of DPSCs, which hold great potential for bone regeneration treatment; however, further studies are necessary.


Asunto(s)
Sustitutos de Huesos , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Bovinos , Osteogénesis , Pulpa Dental , Regeneración Ósea
2.
Eur Spine J ; 31(4): 1013-1021, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34716821

RESUMEN

PURPOSE: There is a paucity of studies on new vertebral body tethering (VBT) surgical constructs especially regarding their potentially motion-preserving ability. This study analyses their effects on the ROM of the spine. METHODS: Human spines (T10-L3) were tested under pure moment in four different conditions: (1) native, (2) instrumented with one tether continuously connected in all vertebrae from T10 to L3, (3) additional instrumented with a second tether continuously connected in all vertebrae from T11 to L3, and (4) instrumented with one tether and one titanium rod (hybrid) attached to T12, L1 and L2. The instrumentation was inserted in the left lateral side. The intersegmental ROM was evaluated using a magnetic tracking system, and the medians were analysed. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct. The mentioned information is correct RESULTS: Compared to the native spine, the instrumented spine presented a reduction of less than 13% in global ROM considering flexion-extension and axial rotation. For left lateral bending, the median global ROM of the native spine (100%) significantly reduced to 74.6%, 66.4%, and 68.1% after testing one tether, two tethers and the hybrid construction, respectively. In these cases, the L1-L2 ROM was reduced to 68.3%, 58.5%, and 38.3%, respectively. In right lateral bending, the normalized global ROM of the spine with one tether, two tethers and the hybrid construction was 58.9%, 54.0%, and 56.6%, respectively. Considering the same order, the normalized L1-L2 ROM was 64.3%, 49.9%, and 35.3%, respectively. CONCLUSION: The investigated VBT techniques preserved global ROM of the spine in flexion-extension and axial rotation while reduced the ROM in lateral bending.


Asunto(s)
Escoliosis , Fenómenos Biomecánicos , Humanos , Vértebras Lumbares/cirugía , Rango del Movimiento Articular , Escoliosis/cirugía , Columna Vertebral/cirugía , Cuerpo Vertebral
3.
Curr Issues Mol Biol ; 43(3): 1997-2010, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34889902

RESUMEN

BACKGROUND: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. METHODS: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. RESULTS: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. CONCLUSION: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


Asunto(s)
Anestésicos/administración & dosificación , Anestésicos/farmacocinética , Vesículas Extracelulares/metabolismo , Animales , Biomarcadores , Línea Celular , Vesículas Extracelulares/ultraestructura , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Isquemia/prevención & control , Precondicionamiento Isquémico , Masculino , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Ratas
4.
BMC Musculoskelet Disord ; 22(1): 250, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676483

RESUMEN

BACKGROUND: A novel implant for occipitocervical fusion consisting of a median plate with an additional hook inserting in the foramen magnum was tested. Aim of this study was to test the stability of a new implant for occipitocervical fusion against the already available and employed median plate implant without hook. MATERIAL AND METHOD: 36 rigid polyurethane foams occipital artificial bones were used. The two occipital implants, namely the occipital plate with hook (Group 1) and the one without hook (Group 2), were applied to the artificial occiput trough three occipital screws and ensured into the experimental setup trough a crossbar. The test parameters were set using the testing machine software as follows: (1) test speed: 10 mm/ min, with 25 mm/ min maximum; (2) preload: 5 N; (3) force switch-off threshold: 90% force drop from F_max. Failure force and path were recorded. Failure force is defined as the maximum reaction force under which failure occurs (F_max), while failure path is the travel path during which failure occurs (dL). RESULTS: Group 1 (plate with hook) showed a mean failure force of 459.3 ± 35.9 N and a mean failure path of 5.8 ± 0.3 mm Group 2 (plate without hook) showed a mean failure force of 323.9 ± 20.2 N and a mean failure path of 7.2 ± 0.4 mm. The Shapiro-Wilk test score was not significant (P >  0.1), assuming that data were normally distributed. Group 1 had a statistically significant greater F_max (+ 135.37; P >  0.0001) and less dL (- 1.52; P > 0.0001) compared to group 2. CONCLUSIONS: Medial plates with foramen magnum hooks showed to be more stable that plates without a hook. These new implants may represent a new tool in OCJ fixation, but further studies are required to investigate their behavior in an anatomical setting.


Asunto(s)
Tornillos Óseos , Fusión Vertebral , Fenómenos Biomecánicos , Placas Óseas , Humanos , Hueso Occipital/diagnóstico por imagen , Hueso Occipital/cirugía
5.
Eur Surg Res ; 61(2-3): 83-94, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33022680

RESUMEN

BACKGROUND: Clinical chemistry and hematological tests are widely used to monitor the clinical course of several diseases. However, these parameters are sparse in large-animal models of multiple trauma (MT). Thus, we aimed to provide these missing data to improve future experimental setups in trauma research. METHODS: Male pigs (German Landrace pigs) were randomized into either an MT group (n = 8) including blunt thoracic trauma, tibial fracture, and controlled hemorrhage or a sham group (n = 8) without any trauma. After trauma induction, all animals received intensive care treatment for 72 h under anesthesia, including mechanical ventilation and volume resuscitation. Blood and urine samples were obtained to measure common hematological and chemical parameters before trauma (0 h), after trauma (1.5 h), during resuscitation (2.5 h), after fracture stabilization (3.5 h), and at 12, 24, 48, and 72 h. Statistical analyses were performed using a linear mixed model (group × time) and Welch's ANOVA. RESULTS: MT led to a perceptible immunological reaction. Between groups, significantly different time courses of leukocyte counts (p = 0.034) and lymphocyte proportions (p = 0.001) were observed. Moreover, MT changed the time course of total protein (p = 0.006). Significantly lower concentrations compared to sham were found in MT at each single time point starting at 1.5 h to the end of the observation period (all p < 0.05). CONCLUSIONS: Our results indicate that a traumatic insult leads to significant alterations in the immune system already shortly after trauma. Together with the additional catabolic reactions observed, these alterations might contribute to the occurrence of later complications. The presented data provide valid references for further experimental setups with prolonged observation times, especially in similar porcine models of MT.


Asunto(s)
Modelos Animales de Enfermedad , Traumatismo Múltiple/sangre , Animales , Estudios de Casos y Controles , Masculino , Traumatismo Múltiple/inmunología , Traumatismo Múltiple/orina , Porcinos , Factores de Tiempo
6.
Int Orthop ; 44(3): 595-602, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900572

RESUMEN

PURPOSE: Dysregulation of polymorphonuclear neutrophil (PMN) biology is associated with the development of inflammatory complications after trauma, such as acute respiratory distress syndrome (ARDS). It has been demonstrated that intramedullary nailing is both associated with altered pulmonary neutrophil deposition and the occurrence of ARDS. This standardized study aimed to characterize the long-term remote neutrophil response in the lungs in case of a femur fracture and intramedullary nailing. METHODS: A standardized rat model including intramedullary nailing and a femur fracture was utilized. Groups were terminated after observation times of three, seven and 14 days. Neutrophils were isolated from lung parenchyma and broncho-alveolar lavage fluid (BALF) and analyzed by flow cytometry. Absolute neutrophil numbers as well as membrane expression levels of CD11b, CD62L, and CD11a were compared. RESULTS: Pulmonary neutrophil numbers were increased 3 days after intervention. Membrane expression levels of CD11b (P < 0.01), CD62L (P < 0.01), and CD11a (P = 0.06) on parenchymal PMNs increased as well after 3 days. Thereafter, values restored gradually to physiological levels. Furthermore, neutrophil activation status patterns between parenchymal and BALF neutrophil pools did not correlate. CONCLUSIONS: The current study demonstrates that IMN and a femur fracture are associated with transient increased pulmonary PMN deposition, as well as a specific pattern of activation characterized by temporary increased selectin and integrin receptor expression on pulmonary neutrophils. This phenomenon might play an important role in the pathomechanism of ARDS after IMN. Moreover, we found striking differences between parenchymal and BALF-neutrophil populations, demonstrating the limited readout potential of BALF analysis to investigate the entire pulmonary neutrophil pool.


Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Fracturas del Fémur/inmunología , Fracturas del Fémur/cirugía , Fijación Intramedular de Fracturas/efectos adversos , Inflamación/inmunología , Pulmón/inmunología , Neutrófilos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Antígenos CD11/análisis , Antígenos CD11/biosíntesis , Antígenos CD11/inmunología , Recuento de Células , Modelos Animales de Enfermedad , Femenino , Selectina L/biosíntesis , Selectina L/inmunología , Ratas , Ratas Sprague-Dawley
7.
J Surg Res ; 241: 87-94, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31018170

RESUMEN

BACKGROUND: The aims of the present study were to establish a clinically relevant two-hit model with trauma/hemorrhage followed by sepsis in older mice and investigate age-dependent cardiovascular and immunologic specificities under these conditions. MATERIALS AND METHODS: In aged mice (12, 18, and 24 mo old), a femur fracture followed by hemorrhage was induced. After resuscitation, animals were monitored for 72 h before sepsis was induced. Vital signs were monitored during shock. Systemic interleukin (IL)-6 levels were measured daily. Expression of sarcoplasmic or endoplasmic reticulum calcium ATPase (SERCA) and IL-6 receptor were analyzed in heart, lung, and liver tissues. RESULTS: After induction of shock, mean arterial pressure decreased significantly in all groups (12 mo, P < 0.001; 18 mo, P < 0.001; 24 mo, P = 0.013). Compared with younger animals, 24-mo old mice were not able to adequately compensate for hypovolemia by an increase of heart rate (P = 0.711). Expression of SERCA2 (P = 0.002) and IL-6 receptor on myocytes (P = 0.037), lung (P = 0.005), and liver (P = 0.009) tissues were also lowest in this group. Systemic IL-6 values showed the most distinct posttraumatic response in 24-mo-old mice (P = 0.016). Survival rate decreased significantly with increased age (P = 0.005). CONCLUSIONS: The increased mortality rate in older animals was associated with a limited compensatory physiological response and a more distinct immunologic reaction after trauma and sepsis. A decreased SERCA2 expression and missing feedback loops due to a reduced density of organ bound immune receptors might represent possible explanations for the observed age-dependent differences.


Asunto(s)
Envejecimiento/fisiología , Fracturas del Fémur/mortalidad , Hemorragia/metabolismo , Traumatismo Múltiple/mortalidad , Factores de Edad , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Fracturas del Fémur/complicaciones , Hemorragia/complicaciones , Humanos , Hígado/patología , Pulmón/patología , Masculino , Ratones , Traumatismo Múltiple/etiología , Traumatismo Múltiple/patología , Miocardio/patología , Receptores de Interleucina-6/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/análisis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
J Orthop ; 57: 8-16, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38948499

RESUMEN

Background: Anterior cruciate ligament (ACL) rupture is a prevalent sports injury with rising rates attributed to increased population participation in sports activities. ACL rupture can lead to severe knee complications including cartilage damage, torn meniscus, and osteoarthritis. Current treatment options include conservative measures and surgical interventions. However, debates persist regarding the optimal approach. Purpose: This analysis intended to compare the function, knee stability, and incidence rate of secondary surgery between conservative and surgical treatments in ACL rupture patients. Methods: A systematic search was performed via Embase, Ovid Medline, PubMed, Cochrane Library, Web of Science, and Google Scholar for reporting outcomes of conservative and surgical treatments after ACL rupture. The outcomes included patient-reported outcome measures (PROMs), knee stability, the need for secondary meniscal surgery, delayed ACL reconstruction surgery, and revision ACL reconstruction surgery. Outcomes were analyzed using mean differences or odd ratios (OR) with 95 % CIs. Results: 11 studies were included with 1516 patients. For PROMs, our evidence indicated no differences in KOOS Pain, KOOS Symptoms, KOOS Sport/Rec, KOOS ADL, and KOOS QOL. (all p > 0.05). for knee stability, pivot shift (OR, 0.14; p < 0.001), Lachman test (OR, 0.06; p < 0.001), and tibia translation (p < 0.001) were evaluated, and the available evidence favored surgical treatment over conservative treatment. For the incidence rate of any secondary surgery after the first diagnosis, the surgical group showed a lower rate of meniscal surgery with statistical significance (OR, 0.37; p < 0.001). The average rate of revision ACL reconstruction is 5.80 %, while the rate of delayed ACL reconstruction after conservative treatment is 18.51 %. Conclusion: Currently, there is insufficient empirical evidence to advocate a systematic surgical reconstruction for any patient who tore his ACL. This review found no differences in function outcomes between conservative and surgical treatments. Regarding knee stability and secondary meniscal surgery, the results prefer the surgical treatments. The occurrence rate of revision and delayed ACL reconstruction are non-negligible factors that must be fully understood by both surgeons and patients before choosing a suitable treatment.

9.
Bioengineering (Basel) ; 11(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927763

RESUMEN

Electrical stimulation (ES) is a widely discussed topic in the field of cartilage tissue engineering due to its ability to induce chondrogenic differentiation (CD) and proliferation. It shows promise as a potential therapy for osteoarthritis (OA). In this study, we stimulated mesenchymal stem cells (MSCs) incorporated into collagen hydrogel (CH) scaffolds, consisting of approximately 500,000 cells each, for 1 h per day using a 2.5 Vpp (119 mV/mm) 8 Hz sinusoidal signal. We compared the cell count, morphology, and CD on days 4, 7, and 10. The results indicate proliferation, with an increase ranging from 1.86 to 9.5-fold, particularly on day 7. Additionally, signs of CD were observed. The stimulated cells had a higher volume, while the stimulated scaffolds showed shrinkage. In the ES groups, up-regulation of collagen type 2 and aggrecan was found. In contrast, SOX9 was up-regulated in the control group, and MMP13 showed a strong up-regulation, indicating cell stress. In addition to lower stress levels, the control groups also showed a more spheroidic shape. Overall, scaffold-based ES has the potential to achieve multiple outcomes. However, finding the appropriate stimulation pattern is crucial for achieving successful chondrogenesis.

10.
PLoS One ; 19(8): e0308228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088425

RESUMEN

BACKGROUND: Chest injury is an important factor regarding the prognosis of patients with polytrauma (PT), and the rapid diagnosis of chest injury is of utmost importance. Therefore, the current study focused on patients' physiology and laboratory findings to quickly identify PT patients with chest injury. METHOD: Data on 64 PT patients treated at a trauma center level I between June 2020 and August 2021 were retrospectively collected. The patients were divided into a PT group without chest injury (Group A) and a PT group including chest injury (Group B). The relationship between chest injury and the patients' baseline characteristics and biochemical markers was analyzed. RESULTS: Heart rate, respiration rate, Sequential Organ Failure Assessment (SOFA) score, glutamate oxaloacetate aminotransferase (GOT), glutamate pyruvate transaminase (GPT), creatine kinase MB (CK-MB), leucocytes, hemoglobin (Hb), platelets, urine output, lactate, and lactate dehydrogenase (LDH) in groups A and B exhibited statistically significant differences at certain time points. Multifactorial analysis showed that blood LDH levels at admission were associated with chest injury (P = 0.039, CI 95% 1.001, 1.022). CONCLUSION: LDH may be a promising indicator for screening for the presence of chest injury in patients with severe polytrauma.


Asunto(s)
L-Lactato Deshidrogenasa , Traumatismo Múltiple , Traumatismos Torácicos , Humanos , Traumatismo Múltiple/sangre , Traumatismo Múltiple/diagnóstico , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Traumatismos Torácicos/sangre , Traumatismos Torácicos/diagnóstico , L-Lactato Deshidrogenasa/sangre , Diagnóstico Diferencial , Biomarcadores/sangre , Anciano , Pronóstico
11.
Pharmaceutics ; 16(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399333

RESUMEN

OBJECTIVE: Existing research suggests that bone marrow-derived mesenchymal stem cells (BMSCs) may promote endogenous bone repair. This may be through the secretion of factors that stimulate repair processes or directly through differentiation into osteoblast-progenitor cells. However, the osteogenic potential of BMSCs varies among different tissue sources (e.g., mandibular versus long BMSCs). The main aim of this study was to investigate the difference in osteogenic differentiation capacity between mandibular BMSCs (mBMSCs) and tibial BMSCs (tBMSCs). MATERIALS AND METHODS: Bioinformatics analysis of the GSE81430 dataset taken from the Gene Expression Omnibus (GEO) database was performed using GEO2R. BMSCs were isolated from mandibular and tibial bone marrow tissue samples. Healthy pigs (n = 3) (registered at the State Office for Nature, Environment, and Consumer Protection, North Rhine-Westphalia (LANUV) 81-02.04.2020.A215) were used for this purpose. Cell morphology and osteogenic differentiation were evaluated in mBMSCs and tBMSCs. The expression levels of toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot (WB), respectively. In addition, mBMSC-derived extracellular vesicles (mBMSC-EVs) were gained and used as osteogenic stimuli for tBMSCs. Cell morphology and osteogenic differentiation capacity were assessed after mBMSC-EV stimulation. RESULTS: Bioinformatic analysis indicated that the difference in the activation of the TLR4/NF-κB pathway was more pronounced compared to all other examined genes. Specifically, this demonstrated significant downregulation, whereas only 5-7 upregulated genes displayed significant variances. The mBMSC group showed stronger osteogenic differentiation capacity compared to the tBMSC group, confirmed via ALP, ARS, and von Kossa staining. Furthermore, qPCR and WB analysis revealed a significant decrease in the expression of the TLR4/NF-κB pathway in the mBMSC group compared to the tBMSC group (TLR4 fold changes: mBMSCs vs. tBMSCs p < 0.05; NF-κB fold changes: mBMSCs vs. tBMSCs p < 0.05). The osteogenic differentiation capacity was enhanced, and qPCR and WB analysis revealed a significant decrease in the expression of TLR4 and NF-κB in the tBMSC group with mBMSC-EVs added compared to tBMSCs alone (TLR4 fold changes: p < 0.05; NF-κB fold changes: p < 0.05). CONCLUSION: Our results indicate that mBMSC-EVs can promote the osteogenic differentiation of tBMSCs in vitro. The results also provide insights into the osteogenic mechanism of mBMSCs via TLR4/NF-κB signaling pathway activation. This discovery promises a fresh perspective on the treatment of bone fractures or malunions, potentially offering a novel therapeutic method.

12.
Inflammation ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023831

RESUMEN

Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.

13.
Bone Joint Res ; 13(5): 214-225, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699779

RESUMEN

Aims: The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods: A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase. Results: The early fxH proteome was characterized by immunomodulatory and osteogenic proteins, and proteins involved in the coagulation cascade. Treatment-specific proteome alterations were observed. The fxH proteome of the ETC group showed increased expression of pro-inflammatory proteins related to, among others, activation of the complement system, neutrophil functioning, and macrophage activation, while showing decreased expression of proteins related to osteogenesis and tissue remodelling. Conversely, the fxH proteome of the DCO group contained various upregulated or exclusively detected proteins related to tissue regeneration and remodelling, and proteins related to anti-inflammatory and osteogenic processes. Conclusion: The early fxH proteome of the ETC group was characterized by the expression of immunomodulatory, mainly pro-inflammatory, proteins, whereas the early fxH proteome of the DCO group was more regenerative and osteogenic in nature. These findings match clinical observations, in which enhanced surgical trauma after multiple trauma causes dysbalanced inflammation, potentially leading to reduced tissue regeneration, and gained insights into regulatory mechanisms of fracture healing after severe trauma.

14.
J Am Soc Mass Spectrom ; 35(6): 1184-1196, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679918

RESUMEN

Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (µCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. µCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with µCT.


Asunto(s)
Citrulina , Curación de Fractura , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Microtomografía por Rayos X , Animales , Curación de Fractura/efectos de los fármacos , Ratas , Citrulina/análisis , Citrulina/metabolismo , Citrulina/farmacología , Espectrometría de Masas en Tándem/métodos , Microtomografía por Rayos X/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Masculino , Callo Óseo/efectos de los fármacos , Callo Óseo/diagnóstico por imagen , Callo Óseo/metabolismo , Cromatografía Liquida/métodos , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/análisis , Fosfatidilcolinas/farmacología
15.
Eur J Med Res ; 28(1): 25, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639666

RESUMEN

Little is known about the impact of multiple trauma (MT)-related systemic hypoxia on osseous protein concentration of the hypoxia transcriptome. To shed light on this issue, we investigated erythropoietin (Epo), erythropoietin receptor (EpoR), and Y-box binding protein 1 (YB-1) concentrations in the fracture zone in a porcine MT + traumatic hemorrhage (TH) model. Sixteen male domestic pigs were randomized into two groups: an MT + TH group and a sham group. A tibia fracture, lung contusion, and TH were induced in the MT + TH group. The total observation period was 72 h. YB-1 concentrations in bone marrow (BM) were significantly lower in the fracture zone of the MT + TH animals than in the sham animals. Significant downregulation of BM-localized EpoR concentration in both unfractured and fractured bones was observed in the MT + TH animals relative to the sham animals. In BM, Epo concentrations were higher in the fracture zone of the MT + TH animals compared with that in the sham animals. Significantly higher Epo concentrations were detected in the BM of fractured bone compared to that in cortical bone. Our results provide the first evidence that MT + TH alters hypoxia-related protein concentrations. The impacts of both the fracture and concomitant injuries on protein concentrations need to be studied in more detail to shed light on the hypoxia transcriptome in fractured and healthy bones after MT + TH.


Asunto(s)
Eritropoyetina , Fracturas Óseas , Traumatismo Múltiple , Masculino , Porcinos , Animales , Receptores de Eritropoyetina/metabolismo , Eritropoyetina/genética , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Hipoxia
16.
Front Immunol ; 14: 1273612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936707

RESUMEN

Introduction: Two trauma treatment principles are Early Total Care (ETC), and Damage Control Orthopedics (DCO). Cellular mechanisms that underlie the connection between treatment type, its systemic effects, and tissue regeneration are not fully known. Therefore, this study aimed to: 1) profile microRNA (miRNA) expression in plasma derived Extracellular Vesicles (EVs) from a porcine multiple trauma model at different timepoints, comparing two surgical treatments; and 2) determine and validate the miRNA's messengerRNA (mRNA) targets. Methods: The porcine multiple trauma model consisted of blunt chest trauma, liver laceration, bilateral femur fractures, and controlled haemorrhagic shock. Two treatment groups were defined, ETC (n=8), and DCO (n=8). Animals were monitored under Intensive Care Unit-standards, blood was sampled at 1.5, 2.5, 24, and 72 hours after trauma, and EVs were harvested from plasma. MiRNAs were analysed using quantitative Polymerase Chain Reaction arrays. MRNA targets were identified in silico and validated in vivo in lung and liver tissue. Results: The arrays showed distinct treatment specific miRNA expression patterns throughout all timepoints, and miRNAs related to the multiple trauma and its individual injuries. EV-packed miRNA expression in the ETC group was more pro-inflammatory, indicating potentially decreased tissue regenerative capacities in the acute post-traumatic phase. In silico target prediction revealed several overlapping mRNA targets among the identified miRNAs, related to inflammation, (pulmonary) fibrosis, and Wnt-signalling. These were, among others, A Disintegrin and Metalloproteinase domain-containing protein 10, Collagen Type 1 Alpha 1 Chain, Catenin Beta Interacting Protein 1, and Signal Transducers and Activators of Transcription 3. Validation of these mRNA targets in the lung showed significant, treatment specific deregulations which matched the expression of their upstream miRNAs. No significant mRNA deregulations were observed in the liver. Discussion: This study showed treatment specific, EV-packed miRNA expression patterns after trauma that correlated with mRNA expressions in the lungs, target organs over distance. A systemic response to the increased surgical trauma in the ETC group was identified, with various miRNAs associated with injuries from the trauma model, and involved in (systemic) inflammation, tissue regeneration. EV-transported miRNAs demonstrated a clear role in multiple trauma, warranting further research into tissue-tissue talk and therapeutic applications of EVs after trauma.


Asunto(s)
MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Traumatismo Múltiple , Traumatismos Torácicos , Heridas no Penetrantes , Porcinos , Animales , MicroARN Circulante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/metabolismo , Traumatismo Múltiple/genética , Vesículas Extracelulares/metabolismo , ARN Mensajero/metabolismo
17.
Eur J Med Res ; 28(1): 506, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946271

RESUMEN

Extracellular vesicles (EVs) mediate cell-to-cell communication by horizontally transferring biological materials from host cells to target cells. During exposure to pathogens, pathogen-associated molecular patterns (e.g., lipopolysaccharide, LPS) get in contact with endothelial cells and stimulate the secretion of endothelial cell-derived EVs (E-EVs). The triggered EVs secretion is known to have a modulating influence on the EVs-receiving cells. Macrophages, a major component of innate immunity, are polarized upon receiving external inflammatory stimuli, in which toll-like receptor4 (TLR4)-nuclear factor kappa B (NFκB) pathway plays a key role. However, the functions of LPS-induced E-EVs (ELPS-EVs) in modulating macrophage phenotype and activation remain elusive. We collected the EVs from quiescent endothelial cells (ENor-EVs) and ELPS-EVs to detect their stimulatory role on NR8383 macrophages. Isolated EVs were characterized by transmission electron microscopy (TEM), western blot assay, and nanoparticle tracking analysis (NTA). NR8383 macrophages were stimulated with ELPS-EVs, ENor-EVs, or PBS for 24 h. Hereafter, the uptake of EVs by the macrophages was investigated. Upon EVs stimulation, cellular viability was determined by MTT assay, while macrophage phenotype was analyzed by flow cytometry and immunofluorescence analysis. Furthermore, a western blot assay was conducted to evaluate the potentially involved TLR4-NFκB pathway. Interestingly, upon exposure to LPS, endothelial cells secreted significantly higher amounts of EVs (i.e., ELPS-EVs) when compared to quiescent cells or cells in PBS. The ELPS-EVs were also better internalized by NR8383 macrophages than ENor-EVs. The cellular viability of ELPS-EVs-treated macrophages was 1.2 times higher than those in the ENor-EVs and PBS groups. In addition, ELPS-EVs modulated NR8383 macrophages towards a proinflammatory macrophage M1-like phenotype. This was indicated by the significantly upregulated expressions of proinflammatory macrophage biomarkers CD86 and inducible nitric oxide synthase (iNOS) observed in ELPS-EVs-treated macrophages. The TLR4-NFκB signaling pathway was substantially activated in ELPS-EVs-treated macrophages, indicated by the elevated expressions of makers TLR4 and phosphorylated form of nuclear factor kappa B p65 subunit (p-NFκBp65). Overall, our results indicate that E-EVs play a crucial role in macrophage phenotype modulation under inflammatory conditions.


Asunto(s)
Vesículas Extracelulares , FN-kappa B , Humanos , FN-kappa B/metabolismo , Células Endoteliales/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Macrófagos , Fenotipo , Vesículas Extracelulares/metabolismo
18.
Front Bioeng Biotechnol ; 11: 1160703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020508

RESUMEN

Extracellular vesicles (EVs) are newly appreciated communicators involved in intercellular crosstalk, and have emerged as a promising biomimetic tool for bone tissue regeneration, overcoming many of the limitations associated with cell-based therapies. However, the significance of osteoblast-derived extracellular vesicles on osteogenesis has not been fully established. In this present study, we aim to investigate the therapeutic potential of extracellular vesicles secreted from consecutive 14 days of dexamethasone-stimulated osteoblasts (OB-EVDex) to act as a biomimetic tool for regulating osteogenesis, and to elucidate the underlying mechanisms. OB-EVdex treated groups are compared to the clinically used osteo-inductor of BMP-2 as control. Our findings revealed that OB-EVDex have a typical bilayer membrane nanostructure of, with an average diameter of 178 ± 21 nm, and that fluorescently labeled OB-EVDex were engulfed by osteoblasts in a time-dependent manner. The proliferation, attachment, and viability capacities of OB-EVDex-treated osteoblasts were significantly improved when compared to untreated cells, with the highest proliferative rate observed in the OB-EVDex + BMP-2 group. Notably, combinations of OB-EVDex and BMP-2 markedly promoted osteogenic differentiation by positively upregulating osteogenesis-related gene expression levels of RUNX2, BGLAP, SPP1, SPARC, Col 1A1, and ALPL relative to BMP-2 or OB-EVDex treatment alone. Mineralization assays also showed greater pro-osteogenic potency after combined applications of OB-EVDex and BMP-2, as evidenced by a notable increase in mineralized nodules (calcium deposition) revealed by Alkaline Phosphatase (ALP), Alizarin Red Alizarin Red staining (ARS), and von Kossa staining. Therefore, our findings shed light on the potential of OB-EVDex as a new therapeutic option for enhancing osteogenesis.

19.
Shock ; 59(3): 486-492, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36533531

RESUMEN

ABSTRACT: Objective : The purpose of this study was to investigate the immunomodulatory effects of sulforaphane (SFN), a nuclear factor erythroid 2-related factor (Nrf2) pathway activator, on splenic macrophages' immunocompetence after hemorrhagic shock/resuscitation (HS/R). Methods : Male C57/BL6 wild-type mice (n = 6 per group) were subjected to either pressure-controlled HS (MAP, 35-45 mm Hg) or a sham procedure surgery (without HS). After 90 minutes of HS, fluid resuscitation with withdrawn blood and 0.9% NaCl was performed. Sulforaphane (50 mg/kg of body weight) was applied intraperitoneally immediately after the resuscitation phase as well as 24 and 48 h thereafter, depending on group allocation. The mice were killed at 6, 24, and 72 h after resuscitation. After killing, spleens were harvested to perform Nrf2 immunofluorescence histology. Splenic macrophages were isolated and cultured to measure cytokine secretion in the cell culture supernatant. Furthermore, macrophages isolated after 24-hour resuscitation were treated with 100 ng/mL of bacterial LPS to measure immunocompetence. Matrix-assisted laser desorption/ionization mass spectrometry imaging was performed to verify the distribution of SFN in the spleen after intraperitoneal injection. Results : We showed that administered SFN reached the spleen within the first hour after administration. Furthermore, we identified that SFN increased splenic Nrf2 activation and decreased cytokine expression in splenic macrophages after HS/R. In addition, we showed that SFN exhibited splenic anti-inflammatory properties of macrophages in vitro (IL-6/IL-10-ratio of the HS/R group: 51.79 ± 9.99 [at 6 h] and 15.70 ± 3.35 [at 24 h] vs. HS/R + SFN group: 20.54 ± 5.35 [at 6 h] and 8.60 ± 2.37 [at 24 h], P < 0.05). Furthermore, SFN improved in vitro splenic macrophage immunocompetence after HS/R, as evidenced by the increased secretion of inflammatory cytokines in response to LPS stimulation in vitro . Conclusions : Our study shows that SFN can reduce inflammatory cytokines secreted by splenic macrophages after HS/R and increase their immunocompetence toward a more anti-inflammatory profile.


Asunto(s)
Citocinas , Choque Hemorrágico , Masculino , Animales , Ratones , Citocinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Choque Hemorrágico/patología , Lipopolisacáridos , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Resucitación
20.
Sci Rep ; 13(1): 12475, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528137

RESUMEN

Therapies using dental pulp stem cells (DPSCs) or stem cell-derived extracellular vesicles (EVs) have shown promising applications for bone tissue engineering. This in vitro experiment evaluated the joint osteogenic capability of DPSCs and EVs on alloplastic (maxresorp), allogeneic (maxgraft), and xenogeneic (cerabone) bone grafts. We hypothesize that osteogenic differentiation and the proliferation of human DPSCs vary between bone grafts and are favorable under the influence of EVs. DPSCs were obtained from human wisdom teeth, and EVs derived from DPSCs were isolated from cell culture medium. DPSCs were seeded on alloplastic, allogeneic, and xenogeneic bone graft substitutes for control, and the same scaffolds were administered with EVs in further groups. The cellular uptake of EVs into DPSC cells was assessed by confocal laser scanning microscopy. Cell vitality staining and calcein acetoxymethyl ester staining were used to evaluate cell attachment and proliferation. Cell morphology was determined using scanning electron microscopy, and osteogenic differentiation was explored by alkaline phosphatase and Alizarin red staining. Within the limitations of an in vitro study without pathologies, the results suggest that especially the use of xenogeneic bone graft substitutes with DPSCS and EVs may represent a promising treatment approach for alveolar bone defects.


Asunto(s)
Sustitutos de Huesos , Vesículas Extracelulares , Trasplante de Células Madre Hematopoyéticas , Humanos , Osteogénesis , Células Cultivadas , Diferenciación Celular , Pulpa Dental , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA