Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 24(8): 2287-96, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25561689

RESUMEN

Glycogen storage disease type 1a (GSD1a) is a rare disease due to the deficiency in the glucose-6-phosphatase (G6Pase) catalytic subunit (encoded by G6pc), which is essential for endogenous glucose production. Despite strict diet control to maintain blood glucose, patients with GSD1a develop hepatomegaly, steatosis and then hepatocellular adenomas (HCA), which can undergo malignant transformation. Recently, gene therapy has attracted attention as a potential treatment for GSD1a. In order to maintain long-term transgene expression, we developed an HIV-based vector, which allowed us to specifically express the human G6PC cDNA in the liver. We analysed the efficiency of this lentiviral vector in the prevention of the development of the hepatic disease in an original GSD1a mouse model, which exhibits G6Pase deficiency exclusively in the liver (L-G6pc(-/-) mice). Recombinant lentivirus were injected in B6.G6pc(ex3lox/ex3lox). SA(creERT2/w) neonates and G6pc deletion was induced by tamoxifen treatment at weaning. Magnetic resonance imaging was then performed to follow up the development of hepatic tumours. Lentiviral gene therapy restored glucose-6 phosphatase activity sufficient to correct fasting hypoglycaemia during 9 months. Moreover, lentivirus-treated L-G6pc(-/-) mice presented normal hepatic triglyceride levels, whereas untreated mice developed steatosis. Glycogen stores were also decreased although liver weight remained high. Interestingly, lentivirus-treated L-G6pc(-/-) mice were protected against the development of hepatic tumours after 9 months of gene therapy while most of untreated L-G6pc(-/-) mice developed millimetric HCA. Thus the treatment of newborns by recombinant lentivirus appears as an attractive approach to protect the liver from the development of steatosis and hepatic tumours associated to GSD1a pathology.


Asunto(s)
Terapia Genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Lentivirus/genética , Neoplasias Hepáticas/prevención & control , Animales , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Humanos , Lentivirus/metabolismo , Hígado/enzimología , Neoplasias Hepáticas/etiología , Ratones , Ratones Noqueados
2.
Kidney Int ; 86(4): 747-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24717294

RESUMEN

Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and progressive glomerular hyperperfusion and hyperfiltration preceding the development of microalbuminuria and proteinuria. To better understand the end-stage nephropathy in glycogen storage disease type 1a, we generated a novel kidney-specific G6pc knockout (K-G6pc(-/-)) mouse, which exhibited normal life expectancy. After 6 months, K-G6pc(-/-) mice showed glycogen overload leading to nephromegaly and tubular dilation. Moreover, renal accumulation of lipids due to activation of de novo lipogenesis was observed. This led to the activation of the renin-angiotensin system and the development of epithelial-mesenchymal transition process and podocyte injury by transforming growth factor ß1 signaling. The K-G6pc(-/-) mice developed microalbuminuria caused by the impairment of the glomerular filtration barrier. Thus, renal G6pc deficiency alone is sufficient to induce the development of the early-onset nephropathy observed in glycogen storage disease type 1a, independent of the liver disease. The K-G6pc(-/-) mouse model is a unique tool to decipher the molecular mechanisms underlying renal failure and to evaluate potential therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Barrera de Filtración Glomerular/fisiopatología , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedades Renales/patología , Túbulos Renales/patología , Albuminuria/etiología , Animales , Dilatación Patológica/etiología , Dilatación Patológica/patología , Transición Epitelial-Mesenquimal , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Noqueados , Podocitos/patología , Sistema Renina-Angiotensina , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
3.
Mol Metab ; 3(5): 531-43, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25061558

RESUMEN

Type 2 diabetes is characterized by a deterioration of glucose tolerance, which associates insulin resistance of glucose uptake by peripheral tissues and increased endogenous glucose production. Here we report that the specific suppression of hepatic glucose production positively modulates whole-body glucose and energy metabolism. We used mice deficient in liver glucose-6 phosphatase that is mandatory for endogenous glucose production. When they were fed a high fat/high sucrose diet, they resisted the development of diabetes and obesity due to the activation of peripheral glucose metabolism and thermogenesis. This was linked to the secretion of hepatic hormones like fibroblast growth factor 21 and angiopoietin-like factor 6. Interestingly, the deletion of hepatic glucose-6 phosphatase in previously obese and insulin-resistant mice resulted in the rapid restoration of glucose and body weight controls. Therefore, hepatic glucose production is an essential lever for the control of whole-body energy metabolism during the development of obesity and diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA