Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 21(1): 473-86, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24953725

RESUMEN

Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Fagus/química , Bosques , Picea/química , Especies de Nitrógeno Reactivo/química , Suelo/química , Análisis de Varianza , Biomasa , Isótopos de Carbono/análisis , Fraccionamiento Químico , Fagus/metabolismo , Ácidos Grasos/análisis , Fotosíntesis/fisiología , Picea/metabolismo
2.
Glob Chang Biol ; 20(1): 327-40, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23996910

RESUMEN

Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal- and bacterial-derived microbial residues in soil. We made use of a 4-year combined CO2 enrichment and N deposition experiment in model forest ecosystems, providing a distinct (13) C signal for 'new' and 'old' C in soil organic matter and microbial residues measured in density and particle-size fractions of soils. Our hypothesis was that N deposition decreases the amount of fungal residues in soils, with the new microbial residues being more strongly affected than old residues. The soil fractionation showed that organic matter and microbial residues are mainly stabilized by association with soil minerals in the heavy and fine fractions. Moreover, the bacterial residues are relatively enriched at mineral surfaces compared to fungal residues. The (13) C tracing indicated a greater formation of fungal residues compared to bacterial residues after 4 years of experiment. In contradiction to our hypotheses, N deposition significantly increased the amount of new fungal residues in bulk soil and decreased the decomposition of old microbial residues associated with soil minerals. The preservation of old microbial residues could be due to decreased N limitation of microorganisms and therefore a reduced dependence on organic N sources. This mechanism might be especially important in fine heavy fractions with low C/N ratios, where microbial residues are effectively protected from decomposition by association with soil minerals.


Asunto(s)
Amino Azúcares/análisis , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Amino Azúcares/metabolismo , Bacterias/metabolismo , Carbono/análisis , Dióxido de Carbono/metabolismo , Ecosistema , Hongos/metabolismo , Magnoliopsida , Nitrógeno/análisis , Picea , Árboles
3.
Nat Ecol Evol ; 6(8): 1122-1131, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35788708

RESUMEN

Secondary forests constitute an increasingly important component of tropical forests worldwide. Although cycling of essential nutrients affects recovery trajectories of secondary forests, the effect of nutrient limitation on forest regrowth is poorly constrained. Here we use three lines of evidence from secondary forest succession sequences in central Africa to identify potential nutrient limitation in regrowing forests. First, we show that atmospheric phosphorus supply exceeds demand along forest succession, whereas forests rely on soil stocks to meet their base cation demands. Second, soil nutrient metrics indicate that available phosphorus increases along the succession, whereas available cations decrease. Finally, fine root, foliar and litter stoichiometry show that tissue calcium concentrations decline relative to those of nitrogen and phosphorus during succession. Taken together, these observations suggest that calcium becomes an increasingly scarce resource in central African forests during secondary succession. Furthermore, ecosystem calcium storage shifts from soil to woody biomass over succession, making it a vulnerable nutrient in the wake of land-use change scenarios that involve woody biomass export. Our results thus call for a broadened focus on elements other than nitrogen and phosphorus regarding tropical forest biogeochemical cycles and identify calcium as a scarce and potentially limiting nutrient in an increasingly disturbed and dynamic tropical forest landscape.


Asunto(s)
Calcio , Ecosistema , Bosques , Nitrógeno , Fósforo , Suelo , Árboles
4.
Water Res ; 42(14): 3579-90, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18662823

RESUMEN

Gas-water phase transfer associated with the dissolution of trapped gas in porous media is a key process that occurs during pulsed gas sparging operations in contaminated aquifers. Recently, we applied a numerical model that was experimentally validated for abiotic situations, where multi-species kinetic inter-phase mass transfer and dissolved gas transport occurred during pulsed gas penetration-dissolution events [Balcke, G.U., Meenken, S., Hoefer, C. and Oswald, S.E., 2007. Kinetic gas-water transfer and gas accumulation in porous media during pulsed oxygen sparging. Environmental Science & Technology 41(12), 4428-4434]. Here we extend the model by using a reactive term to describe dissolved oxygen demand reactions via the formation of a reaction product, and to study the effects of such an aerobic degradation process on gas-water mass transfer and dissolution of trapped gas in porous media. As a surrogate for microbial oxygen reduction, first-order oxygen demand reactions were based on the measured oxidation of alkaline pyrogallol in column experiments. This reaction allows for adjusting the rate to values close to expected biodegradation rates and detection of the reaction product. The experiments and model consistently demonstrated accelerated oxygen gas-water mass transfer with increasing oxygen demand rates associated with an influence on the partitioning of other gases. Thus, as the oxygen demand accelerates, less gas phase residues, consisting mainly of nitrogen, are observed, which is in general beneficial to the performance of field biosparging operations. Model results additionally predict how oxygen demand influences oxygen mass transfer for a range of biodegradation rates. A typical field case scenario was simulated to illustrate the observed coupling of oxygen consumption and gas bubble dissolution. The model provides a tool to improve understanding of trapped gas behavior in porous media and contributes to a model-assisted biosparging.


Asunto(s)
Oxígeno/química , Agua/química , Biodegradación Ambiental , Simulación por Computador , Cinética , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Pirogalol/química , Factores de Tiempo , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/prevención & control
5.
Sci Total Environ ; 637-638: 306-317, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29751311

RESUMEN

Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ13C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ±â€¯13%) contributor of sediment followed by broadleaf forest (15 ±â€¯8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ±â€¯8 and 9 ±â€¯7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream. D-MixSIAR provided significant improvement regarding spatially explicit sediment source apportionment within the entire catchment system. This information is essential to prioritize implementation measures to control erosion in community managed forests to reduce sediment loadings to Kulekhani hydropower reservoir. In conclusion, using compound-specific stable isotope (CSSI) tracers for sediment fingerprinting in combination with a deconvolutional Bayesian mixing model offers a versatile approach to deal with the large tracer variability within catchment land uses and thus to successfully apportion multiple sediment sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA