Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 20(21): 4175-4183, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38506651

RESUMEN

Emulsion droplets on the colloidal length scale are a model system of frictionless compliant spheres. Direct imaging studies of the microscopic structure and dynamics of emulsions offer valuable insights into fundamental processes, such as gelation, jamming, and self-assembly. A microscope, however, can only resolve the individual droplets in a densely packed emulsion if the droplets are closely index-matched to their fluid medium. Mitigating perturbations due to gravity additionally requires the droplets to be density-matched to the medium. Creating droplets that are simultaneously index-matched and density-matched has been a long-standing challenge for the soft-matter community. The present study introduces a method for synthesizing monodisperse micrometer-sized siloxane droplets whose density and refractive index can be precisely and independently tuned by adjusting the volume fraction of three silane precursors. A systematic optimization protocol yields fluorescently labeled ternary droplets whose densities and refractive indexes match, to the fourth decimal place, those of aqueous solutions of glycerol or dimethylsiloxane. Because all of the materials in this system are biocompatible, we functionalize the droplets with DNA strands to endow them with programmed inter-droplet interactions. Confocal microscopy then reveals both the three-dimensional structure and the network of droplet-droplet contacts in a class of self-assembled droplet gels, free from gravitational effects. This experimental toolbox creates opportunities for studying the microscopic mechanisms that govern viscoelastic properties and self-assembly in soft materials.


Asunto(s)
ADN , Emulsiones , Emulsiones/química , ADN/química , Refractometría , Siloxanos/química
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001611

RESUMEN

The programmability of DNA oligonucleotides has led to sophisticated DNA nanotechnology and considerable research on DNA nanomachines powered by DNA hybridization. Here, we investigate an extension of this technology to the micrometer-colloidal scale, in which observations and measurements can be made in real time/space using optical microscopy and holographic optical tweezers. We use semirigid DNA origami structures, hinges with mechanical advantage, self-assembled into a nine-hinge, accordion-like chemomechanical device, with one end anchored to a substrate and a colloidal bead attached to the other end. Pulling the bead converts the mechanical energy into chemical energy stored by unzipping the DNA that bridges the hinge. Releasing the bead returns this energy in rapid (>20 µm/s) motion of the bead. Force-extension curves yield energy storage/retrieval in these devices that is very high. We also demonstrate remote activation and sensing-pulling the bead enables binding at a distant site. This work opens the door to easily designed and constructed micromechanical devices that bridge the molecular and colloidal/cellular scales.


Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Oligodesoxirribonucleótidos/química , Fenómenos Biomecánicos , Humanos , Hibridación de Ácido Nucleico/métodos , Pinzas Ópticas
3.
Opt Express ; 31(21): 35200-35207, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859256

RESUMEN

Holographic particle characterization treats holographic microscopy of colloidal particles as an inverse problem whose solution yields the diameter, refractive index and three-dimensional position of each particle in the field of view, all with exquisite precision. This rich source of information on the composition and dynamics of colloidal dispersions has created new opportunities for fundamental research in soft-matter physics, statistical physics and physical chemistry, and has been adopted for product development, quality assurance and process control in industrial applications. Aberrations introduced by real-world imaging conditions, however, can degrade performance by causing systematic and correlated errors in the estimated parameters. We identify a previously overlooked source of spherical aberration as a significant source of these errors. Modeling aberration-induced distortions with an operator-based formalism identifies a spatially varying phase factor that approximately compensates for spherical aberration in recorded holograms. Measurements on model colloidal dispersions demonstrate that phase-only aberration compensation greatly improves the accuracy of holographic particle characterization without significantly affecting measurement speed for high-throughput applications.

4.
Soft Matter ; 19(16): 3002-3014, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37017639

RESUMEN

Holographic particle characterization uses in-line holographic video microscopy to track and characterize individual colloidal particles dispersed in their native fluid media. Applications range from fundamental research in statistical physics to product development in biopharmaceuticals and medical diagnostic testing. The information encoded in a hologram can be extracted by fitting to a generative model based on the Lorenz-Mie theory of light scattering. Treating hologram analysis as a high-dimensional inverse problem has been exceptionally successful, with conventional optimization algorithms yielding nanometer precision for a typical particle's position and part-per-thousand precision for its size and index of refraction. Machine learning previously has been used to automate holographic particle characterization by detecting features of interest in multi-particle holograms and estimating the particles' positions and properties for subsequent refinement. This study presents an updated end-to-end neural-network solution called CATCH (Characterizing and Tracking Colloids Holographically) whose predictions are fast, precise, and accurate enough for many real-world high-throughput applications and can reliably bootstrap conventional optimization algorithms for the most demanding applications. The ability of CATCH to learn a representation of Lorenz-Mie theory that fits within a diminutive 200 kB hints at the possibility of developing a greatly simplified formulation of light scattering by small objects.

5.
Opt Express ; 30(13): 23568-23578, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225033

RESUMEN

The intensity distribution of a holographically-projected optical trap can be tailored to the physical properties of the particles it is intended to trap. Dynamic optimization is especially desirable for manipulating dark-seeking particles that are repelled by conventional optical tweezers, and even more so when dark-seeking particles coexist in the same system as light-seeking particles. We address the need for dexterous manipulation of dark-seeking particles by introducing a class of "dark" traps created from the superposition of two out-of-phase Gaussian modes with different waist diameters. Interference in the difference-of-Gaussians (DoG) trap creates a dark central core that is completely surrounded by light and therefore can trap dark-seeking particles rigidly in three dimensions. DoG traps can be combined with conventional optical tweezers and other types of traps for use in heterogeneous samples. The ideal hologram for a DoG trap being purely real-valued, we introduce a general method based on the Zernike phase-contrast principle to project real-valued holograms with the phase-only diffractive optical elements used in standard holographic optical trapping systems. We demonstrate the capabilities of DoG traps (and Zernike holograms) through experimental studies on high-index, low-index and absorbing colloidal particles dispersed in fluid media.

6.
Opt Express ; 30(21): 38587-38595, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258420

RESUMEN

Holographic particle characterization uses quantitative analysis of holographic microscopy data to precisely and rapidly measure the diameter and refractive index of individual colloidal spheres in their native media. When this technique is applied to inhomogeneous or aspherical particles, the measured diameter and refractive index represent properties of an effective sphere enclosing each particle. Effective-sphere analysis has been applied successfully to populations of fractal aggregates, yielding an overall fractal dimension for the population as a whole. Here, we demonstrate that holographic characterization also can measure the fractal dimensions of an individual fractal cluster by probing how its effective diameter and refractive index change as it undergoes rotational diffusion. This procedure probes the structure of a cluster from multiple angles and thus constitutes a form of tomography. Here we demonstrate and validate this effective-sphere interpretation of aspherical particles' holograms through experimental studies on aggregates of silica nanoparticles grown under a range of conditions.

7.
Soft Matter ; 17(10): 2695-2703, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33630984

RESUMEN

An in-line hologram of a colloidal sphere can be analyzed with the Lorenz-Mie theory of light scattering to measure the sphere's three-dimensional position with nanometer-scale precision while also measuring its diameter and refractive index with part-per-thousand precision. Applying the same technique to aspherical or inhomogeneous particles yields measurements of the position, diameter and refractive index of an effective sphere that represents an average over the particle's geometry and composition. This effective-sphere interpretation has been applied successfully to porous, dimpled and coated spheres, as well as to fractal clusters of nanoparticles, all of whose inhomogeneities appear on length scales smaller than the wavelength of light. Here, we combine numerical and experimental studies to investigate effective-sphere characterization of symmetric dimers of micrometer-scale spheres, a class of aspherical objects that appear commonly in real-world dispersions. Our studies demonstrate that the effective-sphere interpretation usefully distinguishes small colloidal clusters in holographic characterization studies of monodisperse colloidal spheres. The effective-sphere estimate for a dimer's axial position closely follows the ground truth for its center of mass. Trends in the effective-sphere diameter and refractive index, furthermore, can be used to measure a dimer's three-dimensional orientation. When applied to colloidal dimers transported in a Poiseuille flow, the estimated orientation distribution is consistent with expectations for Brownian particles undergoing Jeffery orbits.

8.
BMC Med Genet ; 21(1): 64, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228492

RESUMEN

BACKGROUND: The calcium-selective channel TRPV6 (transient receptor potential cation channel subfamily V member 6) is crucial for maternal-fetal calcium transport across the placenta. TRPV6 mutations have recently been associated with an antenatally severe under-mineralising skeletal dysplasia accompanied by postnatal biochemical abnormalities. This is the first post-mortem report in a patient with TRPV6 skeletal dysplasia. CASE PRESENTATION: The female infant had severe antenatal and postnatal skeletal abnormalities by 20 weeks gestation and was ventilator-dependent from birth. These skeletal abnormalities were apparent at an earlier gestational age than in previous reported cases and a more severe clinical course ensued. Biochemical and skeletal abnormalities, including bone density, improved postnatally but cardiac arrest at 4 months of age led to withdrawal of intensive care. Compound heterozygous TRPV6 variants (c.1978G > C p.(Gly660Arg) and c.1528C > T p.(Arg510Ter)) were identified on exome sequencing. Post-mortem identified skeletal abnormalities but no specific abnormalities in other organ systems. No placental pathology was found, multi-organ histological features reflected prolonged intensive care only. Post-mortem macroscopic examination indicated reduced thoracic size and short, pale and pliable ribs. Histological examination identified reduced number of trabeculae in the diaphyses (away from the growth plates), whereas metaphyses showed adequate mineralisation and normal number of trabeculae, but with slightly enlarged reactive chondrocytes, indicating post-natal skeletal growth recovery. Post-mortem radiological findings demonstrated improved bone density, improved rib width, healed fractures, although ribs were still shorter than normal. Long bones (especially humerus and femur) had improved from initial poorly defined metaphyses and reduced bone density to sharply defined metaphyses, prominent growth restart lines in distal diaphyses and bone-in-bone appearance along diaphyses. CONCLUSIONS: This case provide bone histological confirmation that human skeletal development is compromised in the presence of TRPV6 pathogenic variants. Post-mortem findings were consistent with abnormal in utero skeletal mineralisation due to severe calcium deficit from compromised placental calcium transfer, followed by subsequent phenotypic improvement with adequate postnatal calcium availability. Significant skeletal recovery occurs in the early weeks of postnatal life in TRPV6 skeletal dysplasia.


Asunto(s)
Desarrollo Óseo , Huesos/patología , Canales de Calcio/genética , Desarrollo Infantil/fisiología , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Canales Catiónicos TRPV/genética , Autopsia , Desarrollo Óseo/genética , Huesos/anomalías , Calcificación Fisiológica/genética , Calcio/metabolismo , Canales de Calcio/análisis , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Osteocondrodisplasias/rehabilitación , Parto/fisiología , Canales Catiónicos TRPV/análisis
9.
Soft Matter ; 16(44): 10180-10186, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33057563

RESUMEN

The size of a probe bead reported by holographic particle characterization depends on the proportion of the surface area covered by bound target molecules and so can be used as an assay for molecular binding. We validate this technique by measuring the kinetics of irreversible binding for the antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) as they attach to micrometer-diameter colloidal beads coated with protein A. These measurements yield the antibodies' binding rates and can be inverted to obtain the concentration of antibodies in solution. Holographic molecular binding assays therefore can be used to perform fast quantitative immunoassays that are complementary to conventional serological tests.


Asunto(s)
Inmunoglobulina G , Inmunoensayo , Inmunoglobulina M
10.
Soft Matter ; 16(4): 891-898, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31840154

RESUMEN

The in-line hologram of a micrometer-scale colloidal sphere can be analyzed with the Lorenz-Mie theory of light scattering to obtain precise measurements of the sphere's diameter and refractive index. The same technique also can be used to characterize porous and irregularly shaped colloidal particles provided that the extracted parameters are interpreted with effective-medium theory to represent the properties of an equivalent effective sphere. Here, we demonstrate that the effective-sphere model consistently accounts for changes in the refractive index of the medium as it fills the pores of porous particles and therefore yields quantitative information about such particles' structure and composition. In addition to the sample-averaged porosity, holographic perfusion porosimetry gauges the polydispersity of the porosity. We demonstrate these capabilities through measurements on mesoporous spheres, fractal protein aggregates and irregular nanoparticle agglomerates, all of which are noteworthy for their industrial significance.

11.
Opt Express ; 27(18): 25375-25383, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510410

RESUMEN

How far a particle moves along the optical axis in a holographic optical trap is not simply dictated by the programmed motion of the trap, but rather depends on an interplay of the trap's changing shape and the particle's material properties. For the particular case of colloidal spheres in optical tweezers, holographic video microscopy reveals that trapped particles tend to move farther along the axial direction than the traps that are moving them and that different kinds of particles move by different amounts. These surprising and sizeable variations in axial placement can be explained by a dipole-order theory for optical forces. Their discovery highlights the need for real-time feedback to achieve precise control of colloidal assemblies in three dimensions and demonstrates that holographic microscopy can meet that need.

12.
Langmuir ; 35(20): 6602-6609, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31012588

RESUMEN

Holographic particle characterization measures the sizes and compositions of individual colloidal particles dispersed in fluid media and rapidly amasses statistics on the distributions of these properties, even for complex heterogeneous dispersions. This information is useful for analyzing and optimizing protocols for synthesizing colloidal particles. We illustrate how holographic characterization can guide process design through a case study on a particularly versatile model system composed of an aqueous dispersion of micrometer-scale spheres synthesized from the organosilane monomer 3-(trimethoxysilyl)propyl methacrylate.

14.
Opt Express ; 26(12): 15221-15231, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114772

RESUMEN

Holograms of colloidal particles can be analyzed with the Lorenz-Mie theory of light scattering to measure individual particles' three-dimensional positions with nanometer precision while simultaneously estimating their sizes and refractive indexes. Extracting this wealth of information begins by detecting and localizing features of interest within individual holograms. Conventionally approached with heuristic algorithms, this image analysis problem can be solved faster and more generally with machine-learning techniques. We demonstrate that two popular machine-learning algorithms, cascade classifiers and deep convolutional neural networks (CNN), can solve the feature-localization problem orders of magnitude faster than current state-of-the-art techniques. Our CNN implementation localizes holographic features precisely enough to bootstrap more detailed analyses based on the Lorenz-Mie theory of light scattering. The wavelet-based Haar cascade proves to be less precise, but is so computationally efficient that it creates new opportunities for applications that emphasize speed and low cost. We demonstrate its use as a real-time targeting system for holographic optical trapping.

15.
Opt Express ; 26(4): 3926-3931, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475249

RESUMEN

We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

16.
Adv Health Sci Educ Theory Pract ; 23(2): 249-263, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28702788

RESUMEN

The distinction between basic sciences and clinical knowledge which has led to a theoretical debate on how medical expertise is developed has implications for medical school and lifelong medical education. This longitudinal, population based observational study was conducted to test the fit of three theories-knowledge encapsulation, independent influence, distinct domains-of the development of medical expertise employing structural equation modelling. Data were collected from 548 physicians (292 men-53.3%; 256 women-46.7%; mean age = 24.2 years on admission) who had graduated from medical school 2009-2014. They included (1) Admissions data of undergraduate grade point average and Medical College Admission Test sub-test scores, (2) Course performance data from years 1, 2, and 3 of medical school, and (3) Performance on the NBME exams (i.e., Step 1, Step 2 CK, and Step 3). Statistical fit indices (Goodness of Fit Index-GFI; standardized root mean squared residual-SRMR; root mean squared error of approximation-RSMEA) and comparative fit [Formula: see text] of three theories of cognitive development of medical expertise were used to assess model fit. There is support for the knowledge encapsulation three factor model of clinical competency (GFI = 0.973, SRMR = 0.043, RSMEA = 0.063) which had superior fit indices to both the independent influence and distinct domains theories ([Formula: see text] vs [Formula: see text] [[Formula: see text]] vs [Formula: see text] [[Formula: see text]], respectively). The findings support a theory where basic sciences and medical aptitude are direct, correlated influences on clinical competency that encapsulates basic knowledge.


Asunto(s)
Éxito Académico , Disciplinas de las Ciencias Biológicas/estadística & datos numéricos , Competencia Clínica/estadística & datos numéricos , Prueba de Admisión Académica/estadística & datos numéricos , Médicos/normas , Adulto , Toma de Decisiones Clínicas , Femenino , Humanos , Conocimiento , Estudios Longitudinales , Masculino , Modelos Teóricos , Adulto Joven
17.
Soft Matter ; 12(30): 6357-64, 2016 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-27338294

RESUMEN

We describe colloidal Janus particles with metallic and dielectric faces that swim vigorously when illuminated by defocused optical tweezers without consuming any chemical fuel. Rather than wandering randomly, these optically-activated colloidal swimmers circulate back and forth through the beam of light, tracing out sinuous rosette patterns. We propose a model for this mode of light-activated transport that accounts for the observed behavior through a combination of self-thermophoresis and optically-induced torque. In the deterministic limit, this model yields trajectories that resemble rosette curves known as hypotrochoids.

18.
Soft Matter ; 12(42): 8774-8780, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27722566

RESUMEN

In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin.

19.
Proc Natl Acad Sci U S A ; 110(39): 15544-8, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24009341

RESUMEN

Dislocations, disclinations, and grain boundaries are topological excitations of crystals that play a key role in determining out-of-equilibrium material properties. In this article we study the kinetics, creation, and annihilation processes of these defects in a controllable way by applying "topological tweezers," an array of weak optical tweezers which strain the lattice by weakly pulling on a collection of particles without grabbing them individually. We use topological tweezers to deterministically control individual dislocations and grain boundaries, and reversibly create and destroy dislocation pairs in a 2D crystal of charged colloids. Starting from a perfect lattice, we exert a torque on a finite region and follow the complete step-by-step creation of a disoriented grain, from the creation of dislocation pairs through their reactions to form a grain boundary and their reduction of elastic energy. However, when the grain is rotated back to its original orientation the dislocation reactions do not retrace. Rather, the process is irreversible; the grain boundary expands instead of collapsing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA