Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 110(3): 385-93, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22207712

RESUMEN

RATIONALE: According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. OBJECTIVE: In the present study, we investigated whether bioactivation of GTN is affected by the subcellular localization of ALDH2 using immortalized ALDH2-deficient aortic smooth muscle cells and mouse aortas with selective overexpression of the enzyme in either cytosol or mitochondria. METHODS AND RESULTS: Quantitative Western blotting revealed that ALDH2 is mainly cytosolic in mouse aorta and human coronary arteries, with only approximately 15% (mouse) and approximately 5% (human) of the enzyme being localized in mitochondria. Infection of ALDH2-deficient aortic smooth muscle cells or isolated aortas with adenovirus containing ALDH2 cDNA with or without the mitochondrial signal peptide sequence led to selective expression of the protein in mitochondria and cytosol, respectively. Cytosolic overexpression of ALDH2 restored GTN-induced relaxation and GTN denitration to wild-type levels, whereas overexpression in mitochondria (6-fold vs wild-type) had no effect on relaxation. Overexpression of ALDH2 in the cytosol of ALDH2-deficient aortic smooth muscle cells led to a significant increase in GTN denitration and cyclic GMP accumulation, whereas mitochondrial overexpression had no effect. CONCLUSIONS: The data indicate that vascular bioactivation of GTN is catalyzed by cytosolic ALDH2. Mitochondrial GTN metabolism may contribute to oxidative stress-related adverse effects of nitrate therapy and the development of nitrate tolerance.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Aorta/metabolismo , Citosol/metabolismo , Mitocondrias Musculares/metabolismo , Nitroglicerina/metabolismo , Vasodilatadores/metabolismo , Adenoviridae/genética , Aldehído Deshidrogenasa/deficiencia , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa Mitocondrial , Animales , Aorta/citología , Biotransformación , Línea Celular , ADN/genética , Humanos , Ratones , Ratones Noqueados , Modelos Animales , Nitroglicerina/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
2.
Mol Pharmacol ; 80(2): 258-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21536753

RESUMEN

To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.


Asunto(s)
Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Nitroglicerina/metabolismo , Transducción de Señal/genética , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa Mitocondrial , Animales , Biotransformación/genética , Bovinos , Silenciador del Gen , Humanos , Nitroglicerina/química , Nitrosación
3.
Mol Pharmacol ; 79(3): 541-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21156756

RESUMEN

Mitochondrial aldehyde dehydrogenase (ALDH2) contributes to vascular bioactivation of the antianginal drugs nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN), resulting in cGMP-mediated vasodilation. Although continuous treatment with GTN results in the loss of efficacy that is presumably caused by inactivation of ALDH2, PETN does not induce vascular tolerance. To clarify the mechanisms underlying the distinct pharmacological profiles of GTN and PETN, bioactivation of the nitrates was studied with aortas isolated from ALDH2-deficient and nitrate-tolerant mice, isolated mitochondria, and purified ALDH2. Pharmacological inhibition or gene deletion of ALDH2 attenuated vasodilation to both GTN and PETN to virtually the same degree as long-term treatment with GTN, whereas treatment with PETN did not cause tolerance. Purified ALDH2 catalyzed bioactivation of PETN, assayed as activation of soluble guanylate cyclase (sGC) and formation of nitric oxide (NO). The EC(50) value of PETN for sGC activation was 2.2 ± 0.5 µM. Denitration of PETN to pentaerythrityl trinitrate was catalyzed by ALDH2 with a specific activity of 9.6 ± 0.8 nmol · min(-1) · mg(-1) and a very low apparent affinity of 94.7 ± 7.4 µM. In contrast to GTN, PETN did not cause significant inactivation of ALDH2. Our data suggest that ALDH2 catalyzes bioconversion of PETN in two distinct reactions. Besides the major denitration pathway, which occurs only at high PETN concentrations, a minor high-affinity pathway may reflect vascular bioactivation of the nitrate yielding NO. The very low rate of ALDH2 inactivation, presumably as a result of low affinity of the denitration pathway, may at least partially explain why PETN does not induce vascular tolerance.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Proteínas Mitocondriales/metabolismo , Tetranitrato de Pentaeritritol/análogos & derivados , Aldehído Deshidrogenasa Mitocondrial , Animales , Aorta/efectos de los fármacos , Aorta/enzimología , Aorta/metabolismo , Relación Dosis-Respuesta a Droga , Guanilato Ciclasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Nitroglicerina/metabolismo , Nitroglicerina/farmacología , Tetranitrato de Pentaeritritol/metabolismo , Tetranitrato de Pentaeritritol/farmacología , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA