Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Revista
Intervalo de año de publicación
1.
Bone ; 136: 115322, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32200022

RESUMEN

Hypophosphatasia (HPP) is the metabolic bone disease caused by loss-of-function mutation(s) of the ALPL gene that encodes the cell-surface tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). In HPP, extracellular accumulation of inorganic pyrophosphate (PPi), a TNSALP natural substrate and inhibitor of biomineralization, often leads to rickets or osteomalacia despite normal or sometimes elevated circulating levels of calcium (Ca) and inorganic phosphate (Pi). We report an infant girl with vitamin D deficiency rickets subsequently healed by cholecalciferol administration alone before receiving TNSALP-replacement therapy for accompanying HPP. Throughout her clinical course, circulating Ca and Pi levels were normal or elevated. At presentation with failure-to-thrive at age six months, radiographs revealed severe rickets and serum 25(OH)D was 8 ng/mL (Nl, 30-100), yet low ALP activity 55 U/L (Nl, 124-341), normal Ca 9.3 mg/dL (Nl, 8.5-10.1) and Pi 6.4 mg/dL (Nl, 3.5-7.0), and low-normal parathyroid hormone 21 pg/mL (Nl, 14-72) were instead consistent with HPP. At age nine months, after 1000 IU of cholecalciferol orally each day for six weeks, serum 25(OH)D was 86 ng/mL, strength markedly better, and radiographs documented significant improvement of rickets. At age 18 months, with fully healed vitamin D deficiency rickets, findings of underlying HPP included a waddling gait and Gower sign, metaphyseal "tongues" of radiolucency, elevated serum pyridoxal 5'-phosphate 121 ng/mL (Nl, 2-33), and bi-allelic ALPL missense mutations. Then, nearly complete restoration of strength and radiographic healing of her remaining skeletal disease from HPP occurred during asfotase alfa enzyme replacement treatment. At no time, including presentation, were circulating Ca or Pi levels compromised. Instead, and in keeping with HPP, high-normal or elevated serum Ca and Pi concentrations were consistently documented. Thus, our findings suggest some role for vitamin D in musculoskeletal health beyond assuring circulating mineral sufficiency.


Asunto(s)
Hipercalcemia , Hipofosfatasia , Osteomalacia , Fosfatasa Alcalina , Femenino , Humanos , Hipofosfatasia/complicaciones , Hipofosfatasia/tratamiento farmacológico , Lactante , Minerales , Vitamina D/uso terapéutico
2.
Bone ; 75: 229-39, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25731960

RESUMEN

Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) within the gene TNSALP that encodes the "tissue-nonspecific" isoenzyme of alkaline phosphatase (TNSALP). In HPP, inorganic pyrophosphate, an inhibitor of mineralization and substrate for TNSALP, accumulates extracellularly often leading to rickets or osteomalacia and tooth loss, and sometimes to craniosynostosis and calcium crystal arthropathies. HPP's remarkably broad-ranging expressivity spans stillbirth from profound skeletal hypomineralization to adult-onset dental problems or arthropathies without bone disease, which is largely explained by autosomal recessive versus autosomal dominant transmission from among several hundred, usually missense, TNSALP mutations. For clinical purposes, this expressivity has been codified according to absence or presence of skeletal disease and then patient age at presentation and diagnosis. Pediatric patients are reported principally with "odonto", "childhood", "infantile", or "perinatal" HPP. However, this nosology has not been tested using a cohort of patients, and the ranges of the clinical and laboratory findings have not been defined and contrasted among these patient groups. To evaluate the extant nosology for HPP in children, we assessed our 25 years experience with 173 pediatric HPP patients. Data were exclusively from inpatient studies. The childhood form of HPP was further designated "mild" or "severe". Here, we focused on demographic, clinical, and dual-energy X-ray absorptiometry parameters compared to data from healthy American children. The 173-patient cohort comprised 64 individuals with odonto HPP, 38 with mild childhood HPP, 58 with severe childhood HPP, and 13 with infantile HPP. None was a survivor of perinatal HPP. TNSALP analysis revealed a mutation(s) in all 105 probands tested. Thirteen mutations were unique. Most patients represented autosomal dominant inheritance of HPP. Mutant allele dosage generally indicated the disorder's severity. Gender discordance was found for severe childhood HPP; 42 boys versus 16 girls (p=0.006), perhaps reflecting parental concern about stature and strength. Key disease parameters (e.g., height, weight, numbers of teeth lost prematurely, grip strength, spine and hip bone mineral density) were increasingly compromised as HPP was designated more severe. Although data overlapped successively between the four patient groups, body size (height and weight) differed significantly. Thus, our expanded nosology for HPP in children organizes the disorder's broad-ranging expressivity and should improve understanding of HPP presentation, natural history, complications, and prognosis.


Asunto(s)
Hipofosfatasia , Adolescente , Fosfatasa Alcalina/genética , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Hipofosfatasia/epidemiología , Hipofosfatasia/genética , Hipofosfatasia/fisiopatología , Lactante , Masculino , Mutación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA