Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(24): 4488-4506.e20, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36318922

RESUMEN

When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Fosforilación , Tamaño de la Célula
2.
Am J Physiol Renal Physiol ; 321(2): F245-F254, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229479

RESUMEN

Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.


Asunto(s)
Riñón/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Nefronas/metabolismo , Potasio/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Transporte Iónico , Riñón/citología , Ratones , Proteína Quinasa Deficiente en Lisina WNK 1/genética
3.
Am J Physiol Renal Physiol ; 318(6): F1341-F1356, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32281415

RESUMEN

We characterized mouse blood pressure and ion transport in the setting of commonly used rodent diets that drive K+ intake to the extremes of deficiency and excess. Male 129S2/Sv mice were fed either K+-deficient, control, high-K+ basic, or high-KCl diets for 10 days. Mice maintained on a K+-deficient diet exhibited no change in blood pressure, whereas K+-loaded mice developed an ~10-mmHg blood pressure increase. Following challenge with NaCl, K+-deficient mice developed a salt-sensitive 8 mmHg increase in blood pressure, whereas blood pressure was unchanged in mice fed high-K+ diets. Notably, 10 days of K+ depletion induced diabetes insipidus and upregulation of phosphorylated NaCl cotransporter, proximal Na+ transporters, and pendrin, likely contributing to the K+-deficient NaCl sensitivity. While the anionic content with high-K+ diets had distinct effects on transporter expression along the nephron, both K+ basic and KCl diets had a similar increase in blood pressure. The blood pressure elevation on high-K+ diets correlated with increased Na+-K+-2Cl- cotransporter and γ-epithelial Na+ channel expression and increased urinary response to furosemide and amiloride. We conclude that the dietary K+ maneuvers used here did not recapitulate the inverse effects of K+ on blood pressure observed in human epidemiological studies. This may be due to the extreme degree of K+ stress, the low-Na+-to-K+ ratio, the duration of treatment, and the development of other coinciding events, such as diabetes insipidus. These factors must be taken into consideration when studying the physiological effects of dietary K+ loading and depletion.


Asunto(s)
Presión Arterial , Hipertensión/metabolismo , Túbulos Renales/metabolismo , Deficiencia de Potasio/metabolismo , Potasio en la Dieta/metabolismo , Cloruro de Sodio Dietético/metabolismo , Alimentación Animal , Animales , Diabetes Insípida/etiología , Diabetes Insípida/metabolismo , Diabetes Insípida/fisiopatología , Canales Epiteliales de Sodio/metabolismo , Hipertensión/etiología , Hipertensión/fisiopatología , Transporte Iónico , Túbulos Renales/fisiopatología , Masculino , Ratones de la Cepa 129 , Natriuresis , Fosforilación , Deficiencia de Potasio/etiología , Deficiencia de Potasio/fisiopatología , Potasio en la Dieta/administración & dosificación , Potasio en la Dieta/toxicidad , Simportadores del Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/toxicidad , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Transportadores de Sulfato/metabolismo
4.
Mol Biol Cell ; 30(16): 2037-2052, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31166831

RESUMEN

The epithelial junctional complex, composed of tight junctions, adherens junctions, desmosomes, and an associated actomyosin cytoskeleton, forms the apical junctional ring (AJR), which must maintain its continuity in the face of external mechanical forces that accompany normal physiological functions. The AJR of umbrella cells, which line the luminal surface of the bladder, expands during bladder filling and contracts upon voiding; however, the mechanisms that drive these events are unknown. Using native umbrella cells as a model, we observed that the umbrella cell's AJR assumed a nonsarcomeric organization in which filamentous actin and ACTN4 formed unbroken continuous rings, while nonmuscle myosin II (NMMII) formed linear tracts along the actin ring. Expansion of the umbrella cell AJR required formin-dependent actin assembly, but was independent of NMMII ATPase function. AJR expansion also required membrane traffic, RAB13-dependent exocytosis, specifically, but not trafficking events regulated by RAB8A or RAB11A. In contrast, the voiding-induced contraction of the AJR depended on NMMII and actin dynamics, RHOA, and dynamin-dependent endocytosis. Taken together, our studies indicate that a mechanism by which the umbrella cells retain continuity during cyclical changes in volume is the expansion and contraction of their AJR, processes regulated by the actomyosin cytoskeleton and membrane trafficking events.


Asunto(s)
Polaridad Celular , Vejiga Urinaria/citología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Animales , Dinaminas/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Miosina Tipo II/metabolismo , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA