Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Planta Med ; 89(8): 848-855, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35253148

RESUMEN

Microemulsions are optically nanosized emulsions, isotropic and thermodynamically stable. They represent versatile drug delivery systems with high potential because they can be administered regardless of route. In the present study, we report on the formulation of a microemulsion made with glycerol (2.25%), Labrasol (20.25%) vitamin E acetate (2.50%), and water (75.00%), which was developed using the pseudo-ternary phase diagram. Globules of the microemulsion had PdI less than 0.25 and size of about 17 nm, evaluated by DLS analysis. These values did not change after loading khellin, a natural lipophilic molecule with interesting biological activities, used as a model of lipophilic drug. Carboxymethyl cellulose was selected as gelling polymer to obtain a microemulgel. Viscosity was 22 100.0 ± 1555.6 mPas·s at 21 ± 2 °C, while it was 8916.5 ± 118.1 mPas·s at 35 ± 2 °C, remaining stable over time. Khellin recovery was 93.16 ± 4.39% and was unchanged after 4 weeks of storage (93.23 ± 2.14%). The pH was 6.59 ± 0.19 and it was found to be 6.42 ± 0.34 at the end of the storage lifetime. The diffusion of khellin from the developed formulation was prolonged over an extended period. Based on overall results and due to the dermatological properties of the ingredients of the formulation, the developed microemulgel loaded with khellin is very promising and suitable for skin care applications.


Asunto(s)
Khellin , Tensoactivos , Solubilidad , Sistemas de Liberación de Medicamentos/métodos , Vehículos Farmacéuticos , Emulsiones
2.
Molecules ; 27(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144803

RESUMEN

In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.


Asunto(s)
Cannabidiol , Quitosano , Nanopartículas , Administración Oral , Disponibilidad Biológica , Cannabidiol/farmacocinética , Quitosano/metabolismo , Lípidos , Micelas , Nanopartículas/metabolismo , Solubilidad
3.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946734

RESUMEN

A novel formulation based on nanostructured lipid carriers (NLCs) was developed to increase solubility and intestinal absorption of khellin. K-NLCs were prepared with stearic acid, hempseed oil, Brij S20, and Labrafil M 1944 CS, using the emulsification-ultrasonication method. Developed nanoparticles were chemically and physically characterized by liquid chromatography, light scattering techniques, and electron microscopy. The size, about 200 nm, was optimal for oral delivery, and the polydispersity index (around 0.26), indicated high sample homogeneity. Additionally, K-NLCs showed a spherical morphology without aggregation by microscopic analysis. The encapsulation efficiency of khellin was about 55%. In vitro release studies were carried out in media with different pH to mimic physiological conditions. K-NLCs were found to be physically stable in the simulated gastric and intestinal fluids, and they preserved about 70% of khellin after 6 h incubation. K-NLCs were also successfully lyophilized testing different lyoprotectants, and obtained freeze-dried K-NLCs demonstrated good shelf life over a month. Lastly, permeability studies on Caco-2 cells were performed to predict khellin passive diffusion across the intestinal epithelium, demonstrating that nanoparticles increased khellin permeability by more than two orders of magnitude. Accordingly, developed NLCs loaded with khellin represent a versatile formulation with good biopharmaceutical properties for oral administration, possibly enhancing khellin's bioavailability and therapeutic effects.


Asunto(s)
Cannabis , Khellin , Nanoestructuras/química , Extractos Vegetales , Administración Oral , Células CACO-2 , Cannabis/química , Humanos , Khellin/química , Khellin/farmacocinética , Khellin/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacocinética , Ácidos Esteáricos/farmacología
4.
Pharmaceutics ; 14(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297667

RESUMEN

Oleanolic acid (OA) is the main triterpenic acid of olive leaves known for numerous pharmacological properties, including antioxidant activity. However, it is poorly soluble in water and consequently with low bioavailability, which limits its pharmacological application. Microemulsions (MEs) are dispersed systems consisting of two immiscible phases that promote rapid solubilization and absorption in the gastrointestinal tract. To improve both solubility and intestinal permeability of this molecule, OA has been formulated in two different microemulsions (ME-1 and ME-2). A solubility screening was carried out to select the ME components, and pseudoternary phase diagrams were constructed to evaluate the region of existence and select the appropriate amount of the constituents. ME-1 was prepared using Capmul PG-8/NF as the oily phase, and Transcutol and Tween 20 (7:3) as surfactants, while ME-2 contained Nigella oil and Isopropil myristate as the oily phase, and Transcutol HP and Cremophor EL (2:1) as surfactants. The OA solubility was increased by 1000-fold and 3000-fold in ME-1-OA and ME-2-OA, respectively. The MEs' droplet size and the PdI were evaluated, and the stability was assessed for 8 weeks by monitoring chemical and physical parameters. The parallel artificial membrane permeability assay (PAMPA) also demonstrated an enhanced intestinal permeability of both OA formulations compared with free OA. The potential ability of both MEs to enhance the bioactivity of OA against LPS-induced oxidative stress in RAW 264.7 murine macrophages was also investigated. Overall, this study suggests that both MEs promote a bio-enhancement of the protective action of OA against the LPS-induced pro-oxidant stress in macrophages. Overall, this study suggests that MEs could be an interesting formulation to improve OA oral bioavailability with potential clinical applications.

5.
Pharmaceutics ; 13(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34452236

RESUMEN

Osteoarthritis is the most widespread joint-affecting disease. The management of persistent pain remains inadequate and demands new therapeutic strategies. In this study, we explored the pain relieving and protective properties of a single intra-articular (i.a.) injection of khellin loaded in nanovesicles (K-Ves) based on ascorbyl decanoate plus phosphatidylcholine in a rat model of osteoarthritis (OA) induced by monosodium iodoacetate (MIA) treatment. The developed nanovesicles (approximately 136 nm) had a narrow size distribution (PdI 0.26), a good recovery (about 80%) and a worthy encapsulation efficiency (about 70%) with a ζ-potential of about -40 mV. The stability of K-Ves was assessed in simulated synovial fluid. Seven days after the articular damage with MIA, both K-Ves and a suspension of khellin (K, 50 µL) were i.a. injected. K-Ves significantly counteracted MIA-induced hypersensitivity to mechanical noxious (paw pressure test) and non-noxious stimuli (von Frey test) and significantly reduced the postural unbalance related to spontaneous pain (incapacitance test) and the motor alterations (beam balance test) 7 and 14 days after the i.a. injection. K was partially active only on day 7 after the treatment. The histology emphasized the improvement of several morphological factors in MIA plus K-Ves-treated animals. In conclusion, K-Ves could be successfully used for the local treatment of osteoarthritis.

6.
Int J Pharm ; 607: 121036, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34438005

RESUMEN

Cannabidiol (CBD) is a pleiotropic phytocannabinoid, recently investigated to treat many skin diseases. This study aimed to develop a CBD-loaded O/A microemulsion (CBD-ME) formulated as microemulgel (CBD-MEgel), suitable for local administration. The developed CBD-ME consisted of Solutol HS 15 (20%, surfactant), Transcutol P (9%, cosolvent), isopropyl myristate (5%, oil phase), water (66%) and 1% w/w CBD. Globules had polydispersity index less than 0.23 ± 0.02 and size of 35 ± 2 nm; these values did not change after loading CBD and gelling the formulation with Sepigel 305 obtaining a clear and homogeneous formulation with a pH of 6.56 ± 0.20, suitable for cutaneous application. Viscosity properties were investigated by the rotational digital viscometer, at both 21 ± 2 °C and 35 ± 2 °C. Viscosities of CBD-MEgel were 439,000 ± 4,243 mPa·s and 391,000 ± 1,414 mPa·s respectively. The release studies displayed that 90 ± 24 µg/cm2 of CBD were released in 24 h. The CBD permeability, evaluated using Franz diffusion cells and rabbit ear skin, was 3 ± 1 µg/cm2. Skin-PAMPATM gave a CBD effective permeability of (1.67 ± 0.16) ·10-7 cm/s and an absorbed dose of 115.30 ± 16.99 µg/cm2 after 24 h. Lastly, physical and chemical stability of both CBD-ME and CBD-MEgel were evaluated over a period of 3 months, showing optimal shelf-life at the storage conditions.


Asunto(s)
Productos Biológicos , Cannabidiol , Administración Cutánea , Animales , Emulsiones/metabolismo , Conejos , Piel/metabolismo , Absorción Cutánea , Tensoactivos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA