Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 146(9): 3836-3850, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36960552

RESUMEN

COQ8A-ataxia is a rare form of neurodegenerative disorder due to mutations in the COQ8A gene. The encoded mitochondrial protein is involved in the regulation of coenzyme Q10 biosynthesis. Previous studies on the constitutive Coq8a-/- mice indicated specific alterations of cerebellar Purkinje neurons involving altered electrophysiological function and dark cell degeneration. In the present manuscript, we extend our understanding of the contribution of Purkinje neuron dysfunction to the pathology. By generating a Purkinje-specific conditional COQ8A knockout, we demonstrate that loss of COQ8A in Purkinje neurons is the main cause of cerebellar ataxia. Furthermore, through in vivo and in vitro approaches, we show that COQ8A-depleted Purkinje neurons have abnormal dendritic arborizations, altered mitochondria function and intracellular calcium dysregulation. Furthermore, we demonstrate that oxidative phosphorylation, in particular Complex IV, is primarily altered at presymptomatic stages of the disease. Finally, the morphology of primary Purkinje neurons as well as the mitochondrial dysfunction and calcium dysregulation could be rescued by CoQ10 treatment, suggesting that CoQ10 could be a beneficial treatment for COQ8A-ataxia.


Asunto(s)
Ataxia Cerebelosa , Ratones , Animales , Ataxia Cerebelosa/tratamiento farmacológico , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Células de Purkinje/patología , Calcio/metabolismo , Ataxia/tratamiento farmacológico , Ataxia/genética , Ataxia/metabolismo , Mitocondrias/metabolismo
2.
Methods Mol Biol ; 2056: 241-253, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31586352

RESUMEN

Peripheral neuropathies can have various origins, from genetic to acquired causes, and affect altogether a large group of people in the world. Current available therapies aim at helping the disease symptoms but not to correct or stop the development of the disease. Primary neuronal cultures represent an essential tool in the study of events related to peripheral neuropathies as they allow to isolate the affected cell types, often originating in complex tissues in which they account for only a few percentage of cells. They provide a powerful system to identifying or testing compounds with potential therapeutic effect in the treatment of those diseases. Friedreich's ataxia is an autosomal recessive neurodegenerative disorder, which is characterized by a progressive spinocerebellar and sensory ataxia. Proprioceptive neurons of the dorsal root ganglia (DRG) are the primary affected cells. The disease is triggered by a mutation in the gene FXN which leads to a reduction of the frataxin protein. In order to study the neurophysiopathology of the disease at the cellular and molecular levels, we have established a model of primary cultures of DRG sensory neurons in which we induce the loss of the frataxin protein. With such a model we can alleviate the issues related to the complexity of DRG tissues and low amount of sensory neuron material in adult mouse. Hereby, we provide a protocol of detailed and optimized methods to obtain high yield of healthy mouse DRG sensory neuron in culture.


Asunto(s)
Ataxia de Friedreich/patología , Ganglios Espinales/embriología , Proteínas de Unión a Hierro/genética , Cultivo Primario de Células/métodos , Células Receptoras Sensoriales/citología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Ganglios Espinales/citología , Técnicas de Inactivación de Genes , Humanos , Ratones , Mutación , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA