Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 69(1): 1-11, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28267675

RESUMEN

A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.


Asunto(s)
Calcio/metabolismo , Cloruros/metabolismo , Activación del Canal Iónico , Canales de Potasio Calcio-Activados/clasificación , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Sodio/metabolismo , Terminología como Asunto , Animales , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/clasificación , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/clasificación , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Espermatozoides/metabolismo
2.
Cell Physiol Biochem ; 46(3): 1112-1121, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29669325

RESUMEN

BACKGROUND/AIMS: The replacement of the amino acid valine at position 388 (Shaker position 438) in hKv1.3 channels or at the homologue position 370 in hKv1.2 channels resulted in a channel with two different ion conducting pathways: One pathway was the central, potassium-selective α-pore, that was sensitive to block by peptide toxins (CTX or KTX in the hKv1.3_V388C channel and CTX or MTX in the hKv1.2_V370C channel). The other pathway (σ-pore) was behind the central α-pore creating an inward current at potentials more negative than -100 mV, a potential range where the central α-pore was closed. In addition, current through the σ-pore could not be reduced by CTX, KTX or MTX in the hKv1.3_V388C or the hKv1.2_V370C channel, respectively. METHODS: For a more detailed characterization of the σ-pore, we created a trimer consisting of three hKv1.3_V388C α-subunits linked together and characterized current through this trimeric hKv1.3_V388C channel. Additionally, we determined which amino acids line the σ-pore in the tetrameric hKv1.3_V388C channel by replacing single amino acids in the tetrameric hKv1.3_V388C mutant channel that could be involved in σ-pore formation. RESULTS: Overexpression of the trimeric hKv1.3_V388C channel in COS-7 cells yielded typical σ-pore currents at potentials more negative than -100 mV similar to what was observed for the tetrameric hKv1.3_V388C channel. Electrophysiological properties of the trimeric and tetrameric channel were similar: currents could be observed at potentials more negative than -100 mV, were not carried by protons or chloride ions, and could not be reduced by peptide toxins (CTX, MTX) or TEA. The σ-pore was mostly permeable to Na+ and Li+. In addition, in our site-directed mutagenesis experiments, we created a number of new double mutant channels in the tetrameric hKv1.3_V388C background channel. Two of these tetrameric double mutant channels (hKv1.3_V388C_T392Y and hKv1.3_V388C_Y395W) did not show currents through the σ-pore. CONCLUSIONS: From our experiments with the trimeric hKv1.3_V388C channel we conclude that the σ-pore exists in hKv1.3_V388C channels independently of the α-pore. From our site-directed mutagenesis experiments in the tetrameric hKv1.3_V388C channel we conclude that amino acid position 392 and 395 (Shaker position 442 and 445) line the σ-pore.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Animales , Células COS , Caribdotoxina/toxicidad , Chlorocebus aethiops , Clonación Molecular , Humanos , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana/efectos de los fármacos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Estructura Cuaternaria de Proteína
3.
Cell Physiol Biochem ; 44(1): 172-184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131061

RESUMEN

BACKGROUND/AIMS: The human-voltage gated Kv1.3 channel (hKv1.3) is expressed in T- and B lymphocytes. Verapamil is able to block hKv1.3 channels. We characterized the effect of verapamil on currents through hKv1.3 channels paying special attention to the on-rate (kon) of verapamil. By comparing on-rates obtained in wild-type (wt) and mutant channels a binding pocket for verapamil and impacts of different amino acid residues should be investigated. METHODS: Using the whole-cell patch clamp technique the action of verapamil on currents through wild-type and six hKv1.3 mutant channels in the open state was investigated by measuring the time course of the open channel block in order to calculate kon of verapamil. RESULTS: The on-rate of verapamil to block current through hKv1.3_T419C mutant channels is similar to that obtained for hKv1.3_wt channels whereas the on-rate of verapamil to block currents through hKv1.3_L417C and hKv1.3_L418C mutant channels was ∼ 3 times slower compared to in wt channels. The on-rate of verapamil to block currents through hKv1.3_L346C and the double mutant hKv1.3_L346C_L418C channel was ∼ 2 times slower compared to that obtained in the wt channel. The hKv1.3_I420C mutant channel reduced the on-rate of verapamil to block currents ∼ 6 fold. CONCLUSIONS: We conclude that position 420 in hKv1.3 channels maximally interferes with verapamil reaching its binding site to block the channel. Positions 417 and 418 in hKv1.3 channels partially hinder verapamil reaching its binding site to block the channel whereas position 419 may not interfere with verapamil at all. Mutant hKv1.3_L346C and hKv1.3_L346C_L418C mutant channels might indirectly influence the ability of verapamil reaching its binding site to block current.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Verapamilo/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Cinética , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Verapamilo/química , Verapamilo/farmacología
4.
Cell Physiol Biochem ; 34(2): 474-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25096234

RESUMEN

BACKGROUND/AIMS: Small-conductance calcium-activated (SK) channels play an important role by controlling the after-hyperpolarization of excitable cells. The level of expression and density of these channels is an essential factor for controlling different cellular functions. Several studies showed a co-localization of K(Ca)2.3 channels and Endophilin A3 in different tissues. Endophilin A3 belongs to a family of BAR- and SH3 domain containing proteins that bind to dynamin and are involved in the process of vesicle scission in clathrin-mediated endocytosis. METHODS: Using the yeast two-hybrid system and the GST pull down assay we demonstrated that Endophilin A3 interacts with the N-terminal part of K(Ca)2.3 channels. In addition, we studied the impact of this interaction on channel activity by patch clamp measurements in PC12 cells expressing endogenous K(Ca)2.3 channels. K(Ca)2.3 currents were activated by using pipette solutions containing 1 µM free Ca(2+). RESULTS: Whole-cell measurements of PC12 cells transfected with Endophilin A3 showed a reduction of KCa2.3 specific Cs(+) currents indicating that the interaction of Endophilin A3 with K(Ca)2.3 channels also occurs in mammalian cells and that this interaction has functional consequences for current flowing through K(Ca)2.3 channels. Since K(Ca)2.3 specific currents could be increased in PC12 cells transfected with Endophilin A3 with DC-EBIO (30 µM), a known SK-channel activator, these data also implicate that Endophilin A3 did not significantly remove K(Ca)2.3 channels from the membrane but changed the sensitivity of the channels to Ca(2+) which could be overcome by DC-EBIO. CONCLUSION: This interaction seems to be important for the function of K(Ca)2.3 channels and might therefore play a significant role in situations where channel activation is pivotal for cellular function.


Asunto(s)
Aciltransferasas/metabolismo , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Datos de Secuencia Molecular , Células PC12 , Reacción en Cadena de la Polimerasa , Canales de Potasio/química , Ratas , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
5.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123150

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos/química , Ligandos , Receptores Acoplados a Proteínas G , Bases de Datos Factuales
6.
J Biol Chem ; 286(22): 20031-42, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21498510

RESUMEN

Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Bloqueadores de los Canales de Calcio/farmacología , Cationes Monovalentes , Chlorocebus aethiops , Humanos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Mutación Missense , Estructura Terciaria de Proteína , Verapamilo/farmacología
7.
Mol Pharmacol ; 79(4): 681-91, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21220411

RESUMEN

hKv1.3 channels in lymphocytes are targets for the chemotherapy treatment of autoimmune diseases. Phenylalkylamines block Kv1.3 channels by poorly understood mechanisms. In the inactivation-reduced mutant H399T, the second mutation A413C in S6 substantially decreases the potency of phenylalkylamines with a para-methoxy group at the phenylethylamine end, whereas potency of phenylalkylamines lacking this group is less affected. Intriguingly, completely demethoxylated emopamil blocks mutant H399T/A413C with a 2:1 stoichiometry. Here, we generated a triple mutant, H399T/C412A/A413C, and found that its emopamil-binding properties are similar to those of the double mutant. These data rule out disulfide bonding Cys412-Cys413, which would substantially deform the inner helix, suggest a clash of Cys413 with the para-methoxy group, and provide a distance constraint to dock phenylalkylamines in a Kv1.2-based homology model. Monte Carlo minimizations predict that the verapamil ammonium group donates an H-bond to the backbone carbonyl of Thr391 at the P-loop turn, the pentanenitrilephenyl moiety occludes the pore, whereas the phenylethylamine meta- and para-methoxy substituents approach, respectively, the side chains of Met390 and Ala413. In the double-mutant model, the Cys413 side chains accept H-bonds from two emopamil molecules whose phenyl rings fit in the hydrophobic intersubunit interfaces, whereas the pentanenitrilephenyl moieties occlude the pore. Because these interfaces are unattractive for a methoxylated phenyl ring, the ammonium group of respective phenylalkylamines cannot approach the Cys413 side chain and binds at the focus of P-helices, whereas the para-methoxy group clashes with Cys413. Our study proposes an atomistic mechanism of Kv1.3 block by phenylalkylamines and highlights the intra- and intersubunit interfaces as ligand binding loci.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/química , Mutación , Bloqueadores de los Canales de Potasio/farmacología , Verapamilo/análogos & derivados , Verapamilo/farmacología , Alanina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Células COS , Chlorocebus aethiops , Cisteína/genética , Humanos , Enlace de Hidrógeno , Canal de Potasio Kv1.3/metabolismo , Datos de Secuencia Molecular , Bloqueadores de los Canales de Potasio/metabolismo , Estructura Secundaria de Proteína , Estereoisomerismo , Verapamilo/metabolismo
8.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529831

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Bases del Conocimiento , Ligandos , Receptores Acoplados a Proteínas G
9.
Cell Physiol Biochem ; 24(1-2): 53-64, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19590193

RESUMEN

Cell blebbing is a key feature in apoptosis. Because blebbing dynamically alters cell volume and regulatory volume changes have been linked to chloride (Cl) channels, we evaluated an association between blebbing and Cl channels activity. We used scanning electron microscopy, confocal laser microscopy, and cell sorting to quantify cell volume and blebbing and whole-cell recording to characterize Cl(-) currents. We found that blockade of Cl channel activity as well as inhibition of adenylyl cyclase or protein kinase A (PKA) activity suppressed ammonia-induced blebbing in the microglia cell line, BV-2. In further experiments, we elucidated the common mechanism of Cl channel activity and cyclic adenosine 3',5'-monophosphate (cAMP)-dependent pathway on cell blebbing. These experiments indicated that perfusion of cells with cAMP or the catalytic subunit of PKA activated a Cl(-) current under normotonic conditions. The pharmacological profile (sensitivity to 5-nitro-2-(3-phenylpropylamino)benzoic acid [NPPB], flufenamic acid, and [(dihydroindenyl)oxy]alkanoic acid [DIOA]), outward rectification, and kinetic of the current were identical to the swelling-activated Cl channel. Superfusion of cells with ammonia elicited an outwardly rectifying current sensitive to Cl channel blockers. We propose that ammonia induces a PKA-dependent phosphorylation of Cl channels. Localized influx of Cl(-) is followed by influx of water, required for bleb expansion.


Asunto(s)
Amoníaco/farmacología , Apoptosis , Canales de Cloruro/fisiología , AMP Cíclico/metabolismo , Microglía/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Adenilil Ciclasas/metabolismo , Animales , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Canales de Cloruro/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Conductividad Eléctrica , Potenciales de la Membrana/efectos de los fármacos , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Nitrobenzoatos/farmacología , Fosforilación
10.
Bioorg Med Chem Lett ; 19(8): 2299-304, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19282171
11.
Protein Sci ; 17(1): 107-18, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18042681

RESUMEN

Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.


Asunto(s)
Venenos de Crotálidos/química , Venenos de Crotálidos/síntesis química , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Venenos de Escorpión/química , Venenos de Escorpión/síntesis química , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Venenos de Crotálidos/farmacología , Humanos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Venenos de Escorpión/farmacología , Transfección
12.
J Neurochem ; 106(6): 2312-21, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18624921

RESUMEN

Throughout the CNS, small conductance Ca(2+)-activated potassium (SK) channels modulate firing frequency and neuronal excitability. We have identified a novel, shorter isoform of standard SK2 (SK2-std) in mouse brain which we named SK2-sh. SK2-sh is alternatively spliced at exon 3 and therefore lacks 140 amino acids, which include transmembrane domains S3, S4 and S5, compared with SK2-std. Western blot analysis of mouse hippocampal tissue revealed a 47 kDa protein product as predicted for SK2-sh along with a 64 kDa band representing the standard SK2 isoform. Electrophysiological recordings from transiently expressed SK2-sh revealed no functional channel activity or interaction with SK2-std. With the help of real-time PCR, we found significantly higher expression levels of SK2-sh mRNA in cortical tissue from AD cases when compared with age-matched controls. A similar increase in SK2-sh expression was induced in cortical neurons from mice by cytokine exposure. Substantial clinical evidence suggests that excess cytokines are centrally involved in the pathogenesis of Alzheimer's disease. Thus, SK2-sh as a downstream target of cytokines, provide a promising target for additional investigation regarding potential therapeutic intervention.


Asunto(s)
Empalme Alternativo/genética , Encéfalo/metabolismo , Citocinas/metabolismo , Transducción de Señal/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Corteza Cerebral/metabolismo , Citocinas/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Peso Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/aislamiento & purificación
13.
Eur J Neurosci ; 28(11): 2173-82, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19046364

RESUMEN

Proliferation of astrocytes plays an essential role during ontogeny and in the adult brain, where it occurs following trauma and in inflammation and neurodegenerative diseases as well as in normal, healthy mammals. The cellular mechanisms underlying glial proliferation remain poorly understood. As dopamine is known to modulate proliferation in different cell populations, we investigated the effects of dopamine on the proliferation of striatal astrocytes in vitro. We found that dopamine reduced proliferation. As proliferation involves, among other things, a change in cell volume, which normally comes with water movement across the membrane, water channels might represent a molecular target of the dopamine effect. Therefore we studied the effect of dopamine on aquaporin 4 (AQP4) expression, the main aquaporin subtype expressed in glial cells, and observed a down-regulation of the AQP4-M23 isoform. This down-regulation was the cause of the dopamine-induced decrease in proliferation as knockdown of AQP4 using siRNA techniques mimicked the effects of dopamine on proliferation. Furthermore, stimulation of glial proliferation by basic fibroblast growth factor was also abolished by knocking down AQP4. In addition, blocking of AQP4 with 10 mum tetraethylammonium inhibited osmotically induced cell swelling and stimulation of glial cell proliferation by basic fibroblast growth factor. These results demonstrate a clear-cut involvement of AQP4 in the regulation of proliferation and implicate that modulation of AQP4 could be used therapeutically in the treatment of neurodegenerative diseases as well as in the regulation of reactive astrogliosis by preventing or reducing the glia scar formation, thus improving regeneration following ischemia or other trauma.


Asunto(s)
Acuaporina 4/genética , Astrocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Gliosis/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Gliosis/tratamiento farmacológico , Gliosis/genética , Ratones , Ratones Endogámicos BALB C , Bloqueadores de los Canales de Potasio/farmacología , Interferencia de ARN , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Tetraetilamonio/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Equilibrio Hidroelectrolítico/fisiología
14.
PLoS One ; 12(4): e0176078, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426823

RESUMEN

Current through the σ-pore was first detected in hKv1.3_V388C channels, where the V388C mutation in hKv1.3 channels opened a new pathway (σ-pore) behind the central α-pore. Typical for this mutant channel was inward current at potentials more negative than -100 mV when the central α-pore was closed. The α-pore blockers such as TEA+ and peptide toxins (CTX, MTX) could not reduce current through the σ-pore of hKv1.3_V388C channels. This new pathway would proceed in parallel to the α-pore in the S6-S6 interface gap. To see whether this phenomenon is restricted to hKv1.3 channels we mutated hKv1.2 at the homologue position (hKv1.2_V370C). By overexpression of hKv1.2_V370C mutant channels in COS-7 cells we could show typical σ-currents. The electrophysiological properties of the σ-pore in hKv1.3_V388C and hKv1.2_V370C mutant channels were similar. The σ-pore of hKv1.2_V370C channels was most permeable to Na+ and Li+ whereas Cl- and protons did not influence current through the σ-pore. Tetraethylammonium (TEA+), charybdotoxin (CTX) and maurotoxin (MTX), known α-pore blockers, could not reduce current through the σ-pore of hKv1.2_V370C channels. Taken together we conclude that the observation of σ-pore currents is not restricted to Kv1.3 potassium channels but can also be observed in a closely related potassium channel. This finding could have implications in the treatment of different ion channel diseases linked to mutations of the respective channels in regions close to homologue position investigated by us.


Asunto(s)
Canal de Potasio Kv.1.2/fisiología , Mutación , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Cisteína/química , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/genética , Valina/química
15.
Neuropharmacology ; 50(4): 458-67, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16310228

RESUMEN

Phenothiazines can be used as psychopharmaceutical agents and are known to cause many side effects during treatment since they interfere with many different cellular systems. Recently, phenothiazines were reported to block Ca(2+)-activated potassium channels of the SK type. Therefore we investigated their effect on the functionally related class of Ca(2+)-activated potassium channels of the IK type. The representative phenothiazine derivative promethazine (PTZ) blocked IK channels almost independently from the extracellular pH(o) with an IC(50) of 49 +/- 0.2 microM (pH(o) 7.4, n = 5) and 32 +/- 0.2 microM (pH(o) 6.2, n = 5) in whole cell experiments. The extracellularly applied membrane impermeable PTZ analogue methyl-promethazine (M-PTZ) had a strongly reduced blocking potency compared to PTZ. In contrast, intracellularly applied PTZ and M-PTZ had the same blocking potency on IK channels in excised inside out patch clamp experiments (K(d) = 9.3 +/- 0.5 microM for PTZ, n = 7 and 6.7 +/- 0.4 microM for M-PTZ, n = 5). The voltage dependency of the PTZ and M-PTZ block was investigated in excised inside out patch clamp experiments at a concentration of 100 microM. For both compounds the block was more pronounced at positive membrane potentials. The steepness of the voltage dependency was found to be 70 +/- 10 mV (for PTZ) and 61 +/- 6 mV (for M-PTZ) indicating that both compounds sensed approximately 40% of the entire membrane spanning electrical field from the inside. We conclude that PTZ and M-PTZ bind to a side in IK channels, which is located within the electrical field and is accessible from the intracellular side.


Asunto(s)
Calcio/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Prometazina/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1/farmacología , Humanos , Concentración de Iones de Hidrógeno , Riñón , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp
16.
Biochem J ; 385(Pt 1): 95-104, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15588251

RESUMEN

OSK1 (alpha-KTx3.7) is a 38-residue toxin cross-linked by three disulphide bridges that was initially isolated from the venom of the Asian scorpion Orthochirus scrobiculosus. OSK1 and several structural analogues were produced by solid-phase chemical synthesis, and were tested for lethality in mice and for their efficacy in blocking a series of 14 voltage-gated and Ca2+-activated K+ channels in vitro. In the present paper, we report that OSK1 is lethal in mice by intracerebroventricular injection, with a LD50 (50% lethal dose) value of 2 microg/kg. OSK1 blocks K(v)1.1, K(v)1.2, K(v)1.3 channels potently and K(Ca)3.1 channel moderately, with IC50 values of 0.6, 5.4, 0.014 and 225 nM respectively. Structural analogues of OSK1, in which we mutated positions 16 (Glu16-->Lys) and/or 20 (Lys20-->Asp) to amino acid residues that are conserved in all other members of the alpha-KTx3 toxin family except OSK1, were also produced and tested. Among the OSK1 analogues, [K16,D20]-OSK1 (OSK1 with Glu16-->Lys and Lys20-->Asp mutations) shows an increased potency on K(v)1.3 channel, with an IC50 value of 0.003 nM, without loss of activity on K(Ca)3.1 channel. These data suggest that OSK1 or [K16,D20]-OSK1 could serve as leads for the design and production of new immunosuppressive drugs.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Venenos de Escorpión/síntesis química , Venenos de Escorpión/farmacología , Escorpiones/química , Toxinas Biológicas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Inyecciones Intraventriculares , Dosificación Letal Mediana , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/toxicidad , Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Toxinas Biológicas/síntesis química , Toxinas Biológicas/química , Toxinas Biológicas/toxicidad
17.
Proteins ; 60(3): 401-11, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15971207

RESUMEN

Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity.


Asunto(s)
Biología Computacional/métodos , Canal de Potasio Kv.1.2/química , Canales de Potasio con Entrada de Voltaje/química , Proteómica/métodos , Venenos de Escorpión/química , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Cisteína/química , Disulfuros/química , Electrofisiología , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Escorpiones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácido Trifluoroacético/química
18.
Biochem J ; 377(Pt 1): 25-36, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12962541

RESUMEN

Pi1 is a 35-residue scorpion toxin cross-linked by four disulphide bridges that acts potently on both small-conductance Ca2+-activated (SK) and voltage-gated (Kv) K+ channel subtypes. Two approaches were used to investigate the relative contribution of the Pi1 functional dyad (Tyr-33 and Lys-24) to the toxin action: (i) the chemical synthesis of a [A24,A33]-Pi1 analogue, lacking the functional dyad, and (ii) the production of a Pi1 analogue that is phosphorylated on Tyr-33 (P-Pi1). According to molecular modelling, this phosphorylation is expected to selectively impact the two amino acid residues belonging to the functional dyad without altering the nature and three-dimensional positioning of other residues. P-Pi1 was directly produced by peptide synthesis to rule out any possibility of trace contamination by the unphosphorylated product. Both Pi1 analogues were compared with synthetic Pi1 for bioactivity. In vivo, [A24,A33]-Pi1 and P-Pi1 are lethal by intracerebroventricular injection in mice (LD50 values of 100 and 40 microg/mouse, respectively). In vitro, [A24,A33]-Pi1 and P-Pi1 compete with 125I-apamin for binding to SK channels of rat brain synaptosomes (IC50 values of 30 and 10 nM, respectively) and block rat voltage-gated Kv1.2 channels expressed in Xenopus laevis oocytes (IC50 values of 22 microM and 75 nM, respectively), whereas they are inactive on Kv1.1 or Kv1.3 channels at micromolar concentrations. Therefore, although both analogues are less active than Pi1 both in vivo and in vitro, the integrity of the Pi1 functional dyad does not appear to be a prerequisite for the recognition and binding of the toxin to the Kv1.2 channels, thereby highlighting the crucial role of other toxin residues with regard to Pi1 action on these channels. The computed simulations detailing the docking of Pi1 peptides on to the Kv1.2 channels support an unexpected key role of specific basic amino acid residues, which form a basic ring (Arg-5, Arg-12, Arg-28 and Lys-31 residues), in toxin binding.


Asunto(s)
Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Canal de Potasio Kv.1.2 , Lisina/fisiología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Estructura Terciaria de Proteína , Ratas , Venenos de Escorpión/farmacología , Alineación de Secuencia , Tirosina/fisiología , Xenopus laevis
19.
Biochem J ; 377(Pt 1): 37-49, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14498829

RESUMEN

CoTX1 (cobatoxin 1) is a 32-residue toxin with three disulphide bridges that has been isolated from the venom of the Mexican scorpion Centruroides noxius Hoffmann. Here we report the chemical synthesis, disulphide bridge organization, 3-D (three-dimensional) solution structure determination, pharmacology on K+ channel subtypes (voltage-gated and Ca2+-activated) and docking-simulation experiments. An enzyme-based cleavage of the synthetic folded/oxidized CoTX1 indicated half-cystine pairs between Cys3-Cys22, Cys8-Cys27 and Cys12-Cys29. The 3-D structure of CoTX1 (solved by 1H-NMR) showed that it folds according to the common alpha/beta scaffold of scorpion toxins. In vivo, CoTX1 was lethal after intracerebroventricular injection to mice (LD50 value of 0.5 microg/mouse). In vitro, CoTX1 tested on cells expressing various voltage-gated or Ca2+-activated (IKCa1) K+ channels showed potent inhibition of currents from rat K(v)1.2 ( K(d) value of 27 nM). CoTX1 also weakly competed with 125I-labelled apamin for binding to SKCa channels (small-conductance Ca2+-activated K+ channels) on rat brain synaptosomes (IC50 value of 7.2 microM). The 3-D structure of CoTX1 was used in docking experiments which suggests a key role of Arg6 or Lys10, Arg14, Arg18, Lys21 (dyad), Ile23, Asn24, Lys28 and Tyr30 (dyad) residues of CoTX1 in its interaction with the rat K(v)1.2 channel. In addition, a [Pro7,Gln9]-CoTX1 analogue (ACoTX1) was synthesized. The two residue replacements were selected aiming to restore the RPCQ motif in order to increase peptide affinity towards SKCa channels, and to alter the CoTX1 dipole moment such that it is expected to decrease peptide activity on K(v) channels. Unexpectedly, ACoTX1 exhibited an activity similar to that of CoTX1 towards SKCa channels, while it was markedly more potent on IKCa1 and several voltage-gated K+ channels.


Asunto(s)
Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo , Venenos de Escorpión , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Dicroismo Circular , Simulación por Computador , Disulfuros/química , Humanos , Canal de Potasio Kv.1.2 , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Venenos de Escorpión/síntesis química , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Homología de Secuencia de Aminoácido
20.
Brain Res ; 927(1): 55-68, 2002 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-11814432

RESUMEN

In Xenopus laevis, several distinct K(+)-channels (xKv1.1, xKv1.2, xKv2,1, xKv2.2, xKv3.1) have been cloned, sequenced, and electrophysiologically characterized. K(+)-channels significantly shape neuronal excitability by setting the membrane potential, and latency and duration of action potentials. We identified a further Shaker homologue, xKv1.4, in X. laevis. The open reading frame encodes a K(+)-channel that shares 72% of its 698 amino acids with the human Shaker homologue, hKv1.4. Northern blot analysis revealed xKv1.4 in the brain, muscle, and spleen but not in the ovary, intestine, heart, liver, kidney, lung, and skin. Whole-cell patch clamp recording from rat basophilic leukaemia (RBL) cells transfected with xKv1.4 revealed a voltage-gated, outward rectifying, transient A-type, K(+) selective current. xKv1.4 was strongly dependent on extracellular K(+). Exposure of cells to K(+) free bath solution almost completely abolished the current, whereas in the presence of high K(+), inactivation in response to a maintained depolarizing step and the frequency-dependent cumulative inactivation decreased. Ion channels encoded by xKv1.4 are sensitive to 4-aminopyridine and quinidine but insensitive to tetraethylammonium and the peptide toxins, charybdotoxin, margatoxin, and dendrotoxin. In conclusion, our results indicate that the biophysical and pharmacological signature of xKv1.4 closely resemble those of the A-current described in Xenopus embryonic neurons and is similar to the human Shaker homologue, hKv1.4.


Asunto(s)
Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/genética , Animales , Secuencia de Bases , Química Encefálica/fisiología , Células Cultivadas , Femenino , Expresión Génica/fisiología , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.4 , Leucemia Basofílica Aguda , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Neuronas/citología , Técnicas de Placa-Clamp , Canales de Potasio/química , Canales de Potasio/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Canales de Potasio de la Superfamilia Shaker , Transfección , Células Tumorales Cultivadas , Proteínas de Xenopus , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA