Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neurosci ; 39(16): 3013-3027, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30760627

RESUMEN

In the CNS, oligodendrocytes are responsible for myelin formation and maintenance. Following spinal cord injury, oligodendrocyte loss and an inhibitory milieu compromise remyelination and recovery. Here, we explored the role of retinoic acid receptor-beta (RARß) signaling in remyelination. Using a male Sprague Dawley rat model of PNS-CNS injury, we show that oral treatment with a novel drug like RARß agonist, C286, induces neuronal expression of the proteoglycan decorin and promotes myelination and differentiation of oligodendrocyte precursor cells (NG2+ cells) in a decorin-mediated neuron-glia cross talk. Decorin promoted the activation of RARα in NG2+ cells by increasing the availability of the endogenous ligand RA. NG2+ cells synthesize RA, which is released in association with exosomes. We found that decorin prevents this secretion through regulation of the EGFR-calcium pathway. Using functional and pharmacological studies, we further show that RARα signaling is both required and sufficient for oligodendrocyte differentiation. These findings illustrate that RARß and RARα are important regulators of oligodendrocyte differentiation, providing new targets for myelination.SIGNIFICANCE STATEMENT This study identifies novel therapeutic targets for remyelination after PNS-CNS injury. Pharmacological and knock-down experiments show that the retinoic acid (RA) signaling promotes differentiation of oligodendrocyte precursor cells (OPCs) and remyelination in a cross talk between neuronal RA receptor-beta (RARß) and RARα in NG2+ cells. We show that stimulation of RARα is required for the differentiation of OPCs and we describe for the first time how oral treatment with a RARß agonist (C286, currently being tested in a Phase 1 trial, ISRCTN12424734) leads to the endogenous synthesis of RA through retinaldehyde dehydrogenase 2 (Raldh2) in NG2 cells and controls exosome-associated-RA intracellular levels through a decorin-Ca2+ pathway. Although RARß has been implicated in distinct aspects of CNS regeneration, this study identifies a novel function for both RARß and RARα in remyelination.


Asunto(s)
Exosomas/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Receptores de Ácido Retinoico/agonistas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Tretinoina/metabolismo , Animales , Decorina/metabolismo , Receptores ErbB/metabolismo , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo
2.
Bioorg Med Chem Lett ; 29(8): 995-1000, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30792038

RESUMEN

Oxadiazole replacement of an amide linkage in an RARα agonist template 1, followed by lead optimisation, has produced a highly potent and selective RARß agonist 4-(5-(4,7-dimethylbenzofuran-2-yl)-1,2,4-oxadiazol-3-yl)benzoic acid (10) with good oral bioavailability in the rat and dog. This molecule increases neurite outgrowth in vitro and induces sensory axon regrowth in vivo in a rodent model of avulsion and crush injury, and thus has the potential for the treatment of nerve injury.


Asunto(s)
Oxadiazoles/química , Receptores de Ácido Retinoico/agonistas , Administración Oral , Animales , Perros , Evaluación Preclínica de Medicamentos , Semivida , Locomoción/efectos de los fármacos , Células de Riñón Canino Madin Darby , Proyección Neuronal/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Oxadiazoles/farmacocinética , Oxadiazoles/farmacología , Ratas , Receptores de Ácido Retinoico/metabolismo , Relación Estructura-Actividad
3.
Neurobiol Dis ; 111: 70-79, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29274429

RESUMEN

Stimulation of retinoic acid (RA) mediated signalling pathways following neural injury leads to regeneration in the adult nervous system and numerous studies have shown that the specific activation of the retinoic acid receptor ß (RARß) is required for this process. Here we identify a novel mechanism by which neuronal RARß activation results in the endogenous synthesis of RA which is released in association with exosomes and acts as a positive cue to axonal/neurite outgrowth. Using an established rodent model of RARß induced axonal regeneration, we show that neuronal RARß activation upregulates the enzymes involved in RA synthesis in a cell specific manner; alcohol dehydrogenase7 (ADH7) in neurons and aldehyde dehydrogenase 2 (Raldh2) in NG2 expressing cells (NG2+ cells). These release RA in association with exosomes providing a permissive substrate to neurite outgrowth. Conversely, deletion of Raldh2 in the NG2+ cells in our in vivo regeneration model is sufficient to compromise axonal outgrowth. This hitherto unidentified RA paracrine signalling is required for axonal/neurite outgrowth and is initiated by the activation of neuronal RARß signalling.


Asunto(s)
Antígenos/metabolismo , Exosomas/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía/metabolismo , Proyección Neuronal/fisiología , Proteoglicanos/metabolismo , Tretinoina/metabolismo , Aldehído Oxidorreductasas/metabolismo , Animales , Transporte Biológico/fisiología , Células Cultivadas , Médula Cervical/metabolismo , Médula Cervical/patología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Exosomas/patología , Masculino , Ratones , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Receptores de Ácido Retinoico/metabolismo , Retinal-Deshidrogenasa/metabolismo , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología
4.
J Neurosci ; 35(23): 8959-69, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063927

RESUMEN

G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1ß, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired.


Asunto(s)
Regulación de la Expresión Génica/genética , Umbral del Dolor/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Ciática/metabolismo , Ciática/fisiopatología , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hipersensibilidad/etiología , Hipersensibilidad/genética , Inflamación/etiología , Inflamación/genética , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Dimensión del Dolor , Estimulación Física/efectos adversos , Receptores Acoplados a Proteínas G/genética , Ciática/patología , Médula Espinal/metabolismo , Temperatura , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
J Neurosci ; 35(47): 15731-45, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26609164

RESUMEN

Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor ß (RARß) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)-CNS transition of regrown axons. RARß agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARß-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARß signaling, both neuronal and neuronal-glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT: Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor ß (RARß), which modulates these two aspects of the postinjury physiological response. Activation of RARß in the neuron inactivates phosphatase and tensin homolog and induces its transfer into the astrocytes in small vesicles, where it prevents scar formation. This may open new therapeutic avenues for SCIs.


Asunto(s)
Astrocitos/metabolismo , Cicatriz/metabolismo , Exosomas/metabolismo , Neuroglía/metabolismo , Fosfohidrolasa PTEN/metabolismo , Receptores de Ácido Retinoico/fisiología , Regeneración de la Medula Espinal/fisiología , Animales , Células Cultivadas , Cicatriz/prevención & control , Masculino , Ratones , Neuroglía/patología , Neuronas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
6.
J Neuroinflammation ; 13(1): 96, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27130316

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA. We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in the early stages of collagen-induced arthritis (CIA) model. METHODS: Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7 antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis and cyto(chemo)kine levels in the early phase of CIA. RESULTS: The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-1ß levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated the development of mechanical allodynia, reduced microgliosis and attenuated IL-1ß increments. Acute spinal application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs. CONCLUSIONS: Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is dependent upon microglial-mediated release of IL-1ß in the spinal cord. Blockade of these spinal events may provide pain relief in RA patients.


Asunto(s)
Artritis Experimental/fisiopatología , Artritis Reumatoide/fisiopatología , Sensibilización del Sistema Nervioso Central/fisiología , Hiperalgesia/fisiopatología , Neuronas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Electromiografía , Femenino , Gliosis/inmunología , Gliosis/metabolismo , Gliosis/fisiopatología , Hiperalgesia/inmunología , Hiperalgesia/metabolismo , Inmunohistoquímica , Interleucina-1beta/metabolismo , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Ratas , Ratas Endogámicas Lew , Médula Espinal/inmunología , Médula Espinal/fisiopatología
7.
Mol Pain ; 10: 7, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24472155

RESUMEN

BACKGROUND: The past decade has seen an abundance of transcriptional profiling studies of preclinical models of persistent pain, predominantly employing microarray technology. In this study we directly compare exon microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the effects of increasing RNA-seq sequencing depth. Finally we take advantage of the "agnostic" approach of RNA-seq to discover areas of expression outside of annotated exons that show marked changes in expression following nerve injury. RESULTS: RNA-seq and microarrays largely agree in terms of the genes called as differentially expressed. However, RNA-seq is able to interrogate a much larger proportion of the genome. It can also detect a greater number of differentially expressed genes than microarrays, across a wider range of fold changes and is able to assign a larger range of expression values to the genes it measures. The number of differentially expressed genes detected increases with sequencing depth. RNA-seq also allows the discovery of a number of genes displaying unusual and interesting patterns of non-exonic expression following nerve injury, an effect that cannot be detected using microarrays. CONCLUSION: We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury, and may represent novel genes or isoforms. We also recommend the use of a high sequencing depth in order to detect differential expression for genes with low levels of expression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neuralgia/metabolismo , Neuralgia/patología , Células Receptoras Sensoriales/metabolismo , Análisis de Secuencia de ARN , Transcripción Genética/fisiología , Animales , Mapeo Cromosómico , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Perfilación de la Expresión Génica , Genoma/fisiología , Masculino , Análisis por Micromatrices/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Wistar , Médula Espinal/patología , Nervios Espinales/lesiones
9.
J Neurosci ; 32(48): 17502-13, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197740

RESUMEN

Chronic neuropathic pain affects millions of individuals worldwide, is typically long-lasting, and remains poorly treated with existing therapies. Neuropathic pain arising from peripheral nerve lesions is known to be dependent on the emergence of spontaneous and evoked hyperexcitability in damaged nerves. Here, we report that the potassium channel subunit Kv9.1 is expressed in myelinated sensory neurons, but is absent from small unmyelinated neurons. Kv9.1 expression was strongly and rapidly downregulated following axotomy, with a time course that matches the development of spontaneous activity and pain hypersensitivity in animal models. Interestingly, siRNA-mediated knock-down of Kv9.1 in naive rats led to neuropathic pain behaviors. Diminished Kv9.1 function also augmented myelinated sensory neuron excitability, manifested as spontaneous firing, hyper-responsiveness to stimulation, and persistent after-discharge. Intracellular recordings from ex vivo dorsal root ganglion preparations revealed that Kv9.1 knock-down was linked to lowered firing thresholds and increased firing rates under physiologically relevant conditions of extracellular potassium accumulation during prolonged activity. Similar neurophysiological changes were detected in animals subjected to traumatic nerve injury and provide an explanation for neuropathic pain symptoms, including poorly understood conditions such as hyperpathia and paresthesias. In summary, our results demonstrate that Kv9.1 dysfunction leads to spontaneous and evoked neuronal hyperexcitability in myelinated fibers, coupled with development of neuropathic pain behaviors.


Asunto(s)
Regulación hacia Abajo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axotomía , Conducta Animal/fisiología , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Fibras Nerviosas Mielínicas/metabolismo , Neuralgia/etiología , Neuralgia/fisiopatología , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/fisiopatología , Canales de Potasio con Entrada de Voltaje/genética , ARN Interferente Pequeño , Ratas , Ratas Wistar
10.
Arthritis Rheum ; 64(6): 2038-47, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22213084

RESUMEN

OBJECTIVE: The induction of rheumatoid arthritis (RA) by active and passive immunization of mice results in the development of pain at the same time as the swelling and inflammation, with both peripheral and central sensitization contributing to joint pain. The purpose of this study was to examine the development of pain in the rat model of collagen-induced arthritis (CIA) and to evaluate the contribution of neuroimmune interactions to established arthritis pain. METHODS: Mechanical hypersensitivity was assessed in female Lewis rats before and up to 18 days after induction of CIA by immunization with type II collagen. The effect of selective inhibitors of microglia were then evaluated by prolonged intrathecal delivery of a cathepsin S (CatS) inhibitor and a fractalkine (FKN) neutralizing antibody, from day 11 to day 18 following immunization. RESULTS: Rats with CIA developed significant mechanical hypersensitivity, which started on day 9, before the onset of clinical signs of arthritis. Mechanical hypersensitivity peaked with the severity of the disease, when significant microglial and astrocytic responses, alongside T cell infiltration, were observed in the spinal cord. Intrathecal delivery of microglial inhibitors, a CatS inhibitor, or an FKN neutralizing antibody attenuated mechanical hypersensitivity and spinal microglial response in rats with CIA. CONCLUSION: The inhibition of microglial targets by centrally penetrant CatS inhibitors and CX(3) CR1 receptor antagonists represents a potential therapeutic avenue for the treatment of pain in RA.


Asunto(s)
Artritis Experimental/metabolismo , Catepsinas/metabolismo , Quimiocina CX3CL1/metabolismo , Dolor Crónico/metabolismo , Hiperalgesia/metabolismo , Microglía/metabolismo , Médula Espinal/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Catepsinas/antagonistas & inhibidores , Quimiocina CX3CL1/antagonistas & inhibidores , Dipéptidos/farmacología , Femenino , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Endogámicas Lew , Médula Espinal/efectos de los fármacos , Sulfonas/farmacología
11.
J Neurosci ; 31(50): 18543-55, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171053

RESUMEN

In the majority of spinal cord injuries (SCIs), some axonal projections remain intact. We examined the functional status of these surviving axons since they represent a prime therapeutic target. Using a novel electrophysiological preparation, adapted from techniques used to study primary demyelination, we quantified conduction failure across a SCI and studied conduction changes over time in adult rats with a moderate severity spinal contusion (150 kdyn; Infinite Horizon impactor). By recording antidromically activated single units from teased dorsal root filaments, we demonstrate complete conduction block in ascending dorsal column axons acutely (1-7 d) after injury, followed by a period of restored conduction over the subacute phase (2-4 weeks), with no further improvements in conduction at chronic stages (3-6 months). By cooling the lesion site, additional conducting fibers could be recruited, thus revealing a population of axons that are viable but unable to conduct under normal physiological conditions. Importantly, this phenomenon is still apparent at the most chronic (6 month) time point. The time course of conduction changes corresponded with changes in behavioral function, and ultrastructural analysis of dorsal column axons revealed extensive demyelination during the period of conduction block, followed by progressive remyelination. A proportion of dorsal column axons remained chronically demyelinated, suggesting that these are the axons recruited with the cooling paradigm. Thus, using a clinically relevant SCI model, we have identified a population of axons present at chronic injury stages that are intact but fail to conduct and are therefore a prime target for therapeutic strategies to restore function.


Asunto(s)
Axones/fisiología , Conducción Nerviosa/fisiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Potenciales de Acción/fisiología , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
12.
J Neurosci ; 30(15): 5437-50, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392965

RESUMEN

A key component in the response of the nervous system to injury is the proliferation and switch to a "proinflammatory" phenotype by microglia (microgliosis). In situations where the blood-brain barrier is intact, microglial numbers increase via the proliferation and chemotaxis of resident microglia; however, there is limited knowledge regarding the factors mediating this response. After peripheral nerve injury, a dorsal horn microgliosis develops, which directly contributes to the development of neuropathic pain. Neuregulin-1 (NRG-1) is a growth and differentiation factor with a well characterized role in neural and cardiac development. Microglia express the NRG1 receptors erbB2, 3, and 4, and NRG1 signaling via the erbB2 receptor stimulated microglial proliferation, chemotaxis, and survival, as well as interleukin-1beta release in vitro. Intrathecal treatment with NRG1 resulted in microglial proliferation within the dorsal horn, and these cells developed an activated morphology. This microglial response was associated with the development of both mechanical and cold pain-related hypersensitivity. Primary afferents express NRG1, and after spinal nerve ligation (SNL) we observed both an increase in NRG1 within the dorsal horn as well as activation of erbB2 specifically within microglia. Blockade of the erbB2 receptor or sequestration of endogenous NRG after SNL reduced the proliferation, the number of microglia with an activated morphology, and the expression of phospho-P38 by microglia. Furthermore, consequent to such changes, the mechanical pain-related hypersensitivity and cold allodynia were reduced. NRG1-erbB signaling therefore represents a novel pathway regulating the injury response of microglia.


Asunto(s)
Gliosis/fisiopatología , Microglía/fisiología , Neurregulina-1/metabolismo , Dolor/fisiopatología , Receptor ErbB-2/metabolismo , Nervios Espinales/lesiones , Animales , Proliferación Celular , Supervivencia Celular/fisiología , Quimiotaxis/fisiología , Gliosis/etiología , Masculino , Neuronas Aferentes/metabolismo , Dolor/etiología , Células del Asta Posterior/patología , Células del Asta Posterior/fisiopatología , Ratas , Ratas Wistar , Receptor ErbB-2/antagonistas & inhibidores , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Neurosci ; 30(12): 4503-7, 2010 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-20335487

RESUMEN

P2X(3) and P2X(2/3) receptors are localized on sensory afferents both peripherally and centrally and have been implicated in various sensory functions. However, the physiological role of these receptors expressed presynaptically in the spinal cord in regulating sensory transmission remains to be elucidated. Here, a novel selective P2X(3) and P2X(2/3) antagonist, AF-792 [5-(5-ethynyl-2-isopropyl-4-methoxy-phenoxy)-pyrimidine-2,4-diamine, previously known as RO-5], in addition to less selective purinoceptor ligands, was applied intrathecally in vivo. Cystometry recordings were made to assess changes in the micturition reflex contractions after drug treatments. We found that AF-792 inhibited micturition reflex activity significantly (300 nmol; from baseline contraction intervals of 1.18 +/- 0.07 to 9.33 +/- 2.50 min). Furthermore, inhibition of P2X(3) and P2X(2/3) receptors in the spinal cord significantly attenuated spinal activation of extracellular-signal regulated kinases induced by acute peripheral stimulation of the bladder with 1% acetic acid by 46.4 +/- 12.0% on average. Hence, the data suggest that afferent signals originating from the bladder are regulated by spinal P2X(3) and P2X(2/3) receptors and establish directly an endogenous central presynaptic purinergic mechanism to regulate visceral sensory transmission. Identification of this spinal purinergic control in visceral activities may help the development of P2X(3) and P2X(2/3) antagonist to treat urological dysfunction, such as overactive bladder, and possibly other debilitating sensory disorders, including chronic pain states.


Asunto(s)
Receptores Purinérgicos P2/metabolismo , Médula Espinal/metabolismo , Vejiga Urinaria/fisiología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Femenino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Presión , Antagonistas del Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos
14.
Glia ; 59(4): 554-68, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21319222

RESUMEN

Following peripheral nerve injury microglia accumulate within the spinal cord and adopt a proinflammatory phenotype a process which contributes to the development of neuropathic pain. We have recently shown that neuregulin-1, a growth factor released following nerve injury, activates erbB 2, 3, and 4 receptors on microglia and stimulates proliferation, survival and chemotaxis of these cells. Here we studied the intracellular signaling pathways downstream of neuregulin-1-erbB activation in microglial cells. We found that neuregulin-1 in vitro induced phosphorylation of ERK1/2 and Akt without activating p38MAPK. Using specific kinase inhibitors we found that the mitogenic effect of neuregulin-1 on microglia was dependant on MEK/ERK1/2 pathway, the chemotactic effect was dependant on PI3K/Akt signaling and survival was dependant on both pathways. Intrathecal treatment with neuregulin-1 was associated with microgliosis and development of mechanical and cold pain related hypersensitivity which was dependant on ERK1/2 phosphorylation in microglia. Spinal nerve ligation results in a robust microgliosis and sustained ERK1/2 phosphorylation within these cells. This pathway is downstream of neuregulin-1/erbB signaling since its blockade resulted in a significant reduction in microglial ERK1/2 phosphorylation. Inhibition of the MEK/ERK1/2 pathway resulted in decreased spinal microgliosis and in reduced mechanical and cold hypersensitivity after peripheral nerve damage. We conclude that neuregulin-1 released after nerve injury activates microglial erbB receptors which consequently stimulates the MEK/ERK1/2 pathway that drives microglial proliferation and contributes to the development of neuropathic pain.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuralgia/metabolismo , Neurregulina-1/metabolismo , Traumatismos de los Nervios Periféricos , Análisis de Varianza , Animales , Western Blotting , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Neuralgia/fisiopatología , Neurregulina-1/administración & dosificación , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
15.
Nat Neurosci ; 9(2): 243-50, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16388307

RESUMEN

The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration.


Asunto(s)
Regeneración Nerviosa/fisiología , Neuronas Aferentes/metabolismo , Receptores de Ácido Retinoico/metabolismo , Médula Espinal/metabolismo , Animales , Células Cultivadas , Ganglios Espinales/lesiones , Ganglios Espinales/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratas , Ratas Wistar , Recuperación de la Función/fisiología
16.
J Neurosci ; 28(16): 4261-70, 2008 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-18417706

RESUMEN

Here, we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a potent PI3K inhibitor, dose-dependently inhibited pain-related behavior. This effect was correlated with a reduction of the phosphorylation of ERK (extracellular signal-regulated kinase) and CaMKII (calcium/calmodulin-dependent protein kinase II). In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 (glutamate receptor 1) AMPA receptor subunit in the spinal cord, and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli.


Asunto(s)
Mediadores de Inflamación/fisiología , Dolor/enzimología , Dolor/patología , Fosfatidilinositol 3-Quinasas/fisiología , Médula Espinal/enzimología , Animales , Cromonas/farmacología , Formaldehído/toxicidad , Inflamación/inducido químicamente , Inflamación/enzimología , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Morfolinas/farmacología , Dolor/inducido químicamente , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/patología
17.
iScience ; 20: 554-566, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31655065

RESUMEN

Neuropathic pain (NP) is associated with profound gene expression alterations within the nociceptive system. DNA mechanisms, such as epigenetic remodeling and repair pathways have been implicated in NP. Here we have used a rat model of peripheral nerve injury to study the effect of a recently developed RARß agonist, C286, currently under clinical research, in NP. A 4-week treatment initiated 2 days after the injury normalized pain sensation. Genome-wide and pathway enrichment analysis showed that multiple mechanisms persistently altered in the spinal cord were restored to preinjury levels by the agonist. Concomitant upregulation of DNA repair proteins, ATM and BRCA1, the latter being required for C286-mediated pain modulation, suggests that early DNA repair may be important to prevent phenotypic epigenetic imprints in NP. Thus, C286 is a promising drug candidate for neuropathic pain and DNA repair mechanisms may be useful therapeutic targets to explore.

18.
J Pharmacol Exp Ther ; 326(2): 623-32, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18492948

RESUMEN

Diabetes and cancer chemotherapies are often associated with painful neuropathy. The mechanisms underlying neuropathic pain remain poorly understood, and the current therapies have limited efficacy and are associated with dose-limiting side effects. We recently described the pharmacological characterization of cholest-4-en-3-one, oxime (TRO19622), a cholesterol-like compound, that significantly reduced axonal degeneration and accelerated recovery of motor nerve conduction in a model of peripheral neuropathy induced by crushing the sciatic nerve. These results triggered investigation of efficacy in other preclinical models of peripheral neuropathy. Here, we report evidence that daily oral administration of TRO19622, while similarly improving motor nerve conduction impaired in streptozotocin-induced diabetic rats, also reversed neuropathic pain behavior as early as the first administration. Further exploration of these acute antinociceptive effects demonstrated that TRO19622 was also able to reverse tactile allodynia in vincristine-treated rats, a model of chemotherapy-induced neuropathic pain. It is interesting to note that TRO19622 did not have analgesic activity in animal models of pain produced by formalin injection, noxious thermal or mechanical stimulation, or chronic constriction injury of the sciatic nerve, indicating that painful diabetic or chemotherapy-induced neuropathies share a common mechanism that is distinct from acute, inflammationdriven, or lesion-induced neuropathic pain. These results support the potential use of TRO19622 to treat painful diabetic and chemotherapy-induced neuropathies.


Asunto(s)
Analgésicos , Conducta Animal/efectos de los fármacos , Colestenonas , Diabetes Mellitus Experimental/complicaciones , Dolor/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Analgésicos/sangre , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/efectos adversos , Colestenonas/sangre , Colestenonas/farmacología , Colestenonas/uso terapéutico , Diabetes Mellitus Experimental/fisiopatología , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/fisiopatología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Masculino , Conducción Nerviosa/efectos de los fármacos , Dolor/fisiopatología , Dimensión del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Estreptozocina , Vincristina/efectos adversos
19.
Neurosci Lett ; 437(2): 98-102, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18448252

RESUMEN

Guillain-Barré syndrome (GBS) is an inflammatory disease of the peripheral nervous system which can cause pain via mechanisms that are poorly understood. Here, we show that in rat experimental autoimmune neuritis (EAN) mechanical allodynia developed up to 9 days before the onset of detectable neurological deficits. Allodynia was associated with an increase in the number of microglial cells in the dorsal horn of the spinal cord. The expression of the chemokine CX3CL1 (fractalkine) and its receptor CX3CR1 were also higher in EAN than in control dorsal horns suggesting spinal microglia and CX3CL1/CX3CR1 may play a role in the pain-like behaviour.


Asunto(s)
Síndrome de Guillain-Barré/patología , Microglía/patología , Neuritis Autoinmune Experimental/patología , Umbral del Dolor/fisiología , Células del Asta Posterior/patología , Animales , Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1/metabolismo , Modelos Animales de Enfermedad , Femenino , Síndrome de Guillain-Barré/metabolismo , Neuritis Autoinmune Experimental/metabolismo , Células del Asta Posterior/metabolismo , Ratas , Ratas Endogámicas Lew , Receptores de Quimiocina/metabolismo
20.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176651

RESUMEN

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Asunto(s)
Exosomas/metabolismo , Ganglios Espinales/metabolismo , Macrófagos/inmunología , MicroARNs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Exosomas/genética , Ganglios Espinales/citología , Ganglios Espinales/lesiones , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neuralgia/genética , Neuralgia/inmunología , Fagocitosis , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA