RESUMEN
Direct intercellular communication via gap junctions has an important role in the development of the nervous system, ranging from cell migration and neuronal differentiation to the formation of neuronal activity patterns. This study characterized and compared the specific spatio-temporal expression patterns of connexins (Cxs) 37, 43 and 45 during early human developmental stages (since the 5th until the 10th developmental week) in the spinal cord (SC) and dorsal root ganglia (DRG) using double immunofluorescence and transmission electron microscopy. We found the expression of all three investigated Cxs during early human development in all the areas of interest, in the SC, DRG, developing paravertebral ganglia of the sympathetic trunk, notochord and all three meningeal layers, with predominant expression of Cx37. Comparing the expression of different Cxs between distinct developmental periods, we did not find significant differences. Specific spatio-temporal pattern of Cxs expression might reflect their relevance in the development of all areas of interest via cellular interconnectivity and synchronization during the late embryonic and early fetal period of human development.
Asunto(s)
Conexinas/genética , Ganglios Espinales/metabolismo , Tubo Neural/metabolismo , Médula Espinal/metabolismo , Conexinas/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/ultraestructura , Humanos , Tubo Neural/embriología , Tubo Neural/ultraestructura , Médula Espinal/embriología , Médula Espinal/ultraestructuraRESUMEN
The aim was to explore the influence of experimental diabetes mellitus type 1 (DM1) and potential protective/deleterious effects of different dietary n-6/n-3 PUFA ratios on renal phospholipid composition and pathological changes caused by DM1. Male Wistar rats were injected with 55 mg/kg streptozotocin or citrate buffer (control group). Control (C) and diabetic groups (STZ) were fed with n-6/n-3 ratio of ≈ 7, STZ + N6 with n-6/n-3 ratio ≈ 60 and STZ + DHA with n-6/n-3 ratio of ≈ 1 containing 16% EPA and 19% DHA. Tissues were harvested 30 days after DM1 induction. Blood and kidneys were collected and analysed for phospholipid fatty acid composition, pathohystological changes, ectopic lipid accumulation and expression of VEGF, NF-kB and special AT-rich sequence-binding protein-1 (SATB1). Pathological changes were studied also by using transmission electron microscopy, after immunostaining for VEGF. Substantial changes in renal phospholipid fatty acid composition resulted from DM1 and dietary PUFA manipulation. Extensive vacuolization of distal tubular cells (DTCs) was found in DM1, but it was attenuated in the STZ + DHA group, in which the highest renal NF-kB expression was observed. The ectopic lipid accumulation was observed in proximal tubular cells (PTCs) of all diabetic animals, but it was worsened in the STZ + N6 group. In DM1, we found disturbance of VEGF-transporting vesicular PTCs system, which was substantially worsened in STZ + DHA and STZ + N6. Results have shown that the early phase of DN is characterized with extent damage and vacuolization of DTCs, which could be attenuated by DHA/EPA supplementation. We concluded that dietary fatty acid composition can strongly influence the outcomes of DN.
Asunto(s)
Diabetes Mellitus Tipo 1/patología , Nefropatías Diabéticas/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Túbulos Renales Distales , Animales , Diabetes Mellitus Experimental , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Proteínas de Homeodominio/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/patología , Masculino , Fosfolípidos/metabolismo , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Many clinical and experimental studies have revealed VEGF as an important factor in the pathophysiology of renal damage during diabetes mellitus (DM). Anti-VEGF therapy is in clinical use for treatment of DM and other diabetes-related (and unrelated) diseases. Nevertheless, little is known about the metabolism of VEGF in the kidneys. In order to determine the ultrastructural localization of VEGF in the kidney, we study the distribution of VEGF in the kidney of rats by using immunogold immunohistochemistry. Our light-microscopic data showed remarkable re-distribution of VEGF in proximal tubular cells (PTCs) during prolonged hyperglycemia, a DM type 2 model (DM2), which was confirmed by transmission electron microscopy (TEM) findings. TEM findings revealed an initial presence of VEGF in the vesicular transport apparatus of PTCs in healthy rats and its gradual translocation to the apical membrane of PTCs after renal damage caused by high sucrose treatment. The presented data add to our understanding of kidney VEGF trafficking, providing novel insight into the renal metabolism and pharmacodynamics of the cytokine. This could have a high impact on the use of VEGF and anti-VEGF therapy in different renal diseases.
Asunto(s)
Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/ultraestructura , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Endocitosis , Masculino , Ratas , Ratas WistarRESUMEN
The comparative effects of the two commonly used antidiabetic drugs metformin and liraglutide on renal pathology and expression of connexin 45 (Cx45) and pannexin 1 (Panx1) in adult obese rats fed high-fat high-sugar diet (HFHSD) were studied. Considering recent data on the profound influence of sex on metformin and liraglutide effects, we compared the effects of both drugs between male and female animals. 44-week-old Sprague-Dawley rats were separated into 4 groups that were fed: standard diet, HFHSD, HFHSD treated with metformin (s.c., 50 mg/kg/day) and HFHSD treated with liraglutide (s.c., 0.3 mg/kg/day). Treatment with metformin or liraglutide lasted for 14 weeks. Histology and immunohistochemistry were performed to quantify renal pathological changes and Cx45 and Panx1 expression. HFHSD caused thickening of the Bowman's capsule (BC). Both metformin and liraglutide failed to ameliorate the BC thickening; metformin even worsened it. Effects on the tubulointerstitial fibrosis score, BC thickness and Cx45 and Panx1 expression were sex-dependent. We found a 50% increase in mitochondria in proximal tubules of metformin- and liraglutide-treated HFHSD-fed rats, but these effects were not dependent on the sex. This is a first study showing that the effects of metformin and liraglutide on kidney pathology in rats fed HFHSD are mostly sex-dependent and that these effects are not necessarily beneficial. Both drugs changed the Cx45 and Panx 1 expression; hence their effects could be related to amelioration of disruptions in intercellular communication.
Asunto(s)
Conexinas/biosíntesis , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Liraglutida/farmacología , Metformina/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Caracteres Sexuales , Animales , Carbohidratos de la Dieta/farmacología , Femenino , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Vitamin D is a steroid hormone with numerous actions in the organism. There are strong evidences that relate vitamin D deficiency with liver lipid metabolism disturbances, but the mechanism of this action is still unknown. In our previous work we postulated the localization and accumulation of vitamin D receptor (VDR) in membrane of the lipid droplets (LDs) in hepatocytes. In this study, we applied the transmission electron microscopy (TEM) to confirm this hypothesis by using a long-term (6 months) high sucrose intake rat model that was previously found to be appropriate for research of the hepatic lipid accumulation. In addition to the VDR, we also found key vitamin D metabolizing enzymes, 1α-hydroxylase and CYP 24 associated with the membrane of the LDs. A light-microscopy data revealed significant increase in expression of VDR and CYP 24 in liver of high-sucrose treated rats, in comparison to controlones. According to the best of our knowledge, this is a first study confirming the presence of the VDR in the membrane of the LDs in general and also in particular in LDs of the hepatocytes that were accumulated as a consequence of the prolonged high sucrose intake. Moreover, we found association of main vitamin D metabolizing enzymes with LD membrane. These results provide a new insight in the possible relation of vitamin D signalling system with LD morphology and function and with the lipid metabolism in general.