Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38451943

RESUMEN

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Asunto(s)
Proteómica , Pseudomonas aeruginosa , Virulencia/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Bacterias/metabolismo
2.
Chembiochem ; 20(11): 1430-1437, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644616

RESUMEN

Transfer RNA (tRNA) modifications impact the structure and function of tRNAs, thus affecting the efficiency and fidelity of translation. In the opportunistic pathogen Pseudomonas aeruginosa translational regulation plays an important but less defined role in adaptation to changing environments. In this study, we have explored tRNA modifications in P. aeruginosa through LC-MS/MS approaches. Neutral loss scanning (NLS) demonstrated the potential to identify previously unknown modifications, whereas multiple reaction monitoring (MRM) was able to detect modifications with high specificity and sensitivity. In this study, the MRM-based external calibration method allowed for quantification of the four canonical and 32 modified ribonucleosides, out of which 21 tRNA modifications were quantified in the total tRNA pool of P. aeruginosa PA14. We also purified the single tRNA isoacceptors tRNA-ArgUCU, tRNA-LeuCAA, and tRNA-TrpCCA and determined their specific modification patterns, both qualitatively and quantitatively. Deeper insights into the nature and dynamics of tRNA modifications in P. aeruginosa should pave the way for further studies on post-transcriptional gene regulation as a relatively unexplored molecular mechanism of controlling bacterial pathogenicity and mode of growth.


Asunto(s)
Pseudomonas aeruginosa/genética , ARN de Transferencia/metabolismo , Ribonucleósidos/metabolismo , Cromatografía Liquida/métodos , Procesamiento Postranscripcional del ARN , Espectrometría de Masas en Tándem/métodos
3.
J Pharm Sci ; 112(5): 1364-1371, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36642376

RESUMEN

mRNA vaccines have been established as a safe and effective modality, thanks in large part to the expedited development and approval of COVID-19 vaccines. In addition to the active, full-length mRNA transcript, mRNA fragment species can be present as a byproduct of the cell-free transcription manufacturing process or due to mRNA hydrolysis. In the current study, mRNA fragment species from BNT162b2 mRNA were isolated and characterized. The translational viability of intact and fragmented mRNA species was further explored using orthogonal expression systems to understand the risk of truncated spike protein or off-target antigen translation. The study demonstrates that mRNA fragments are primarily derived from premature transcriptional termination during manufacturing, and only full-length mRNA transcripts are viable for expression of the SARS-CoV-2 spike protein antigen.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2/genética , ARN Mensajero/genética , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA