RESUMEN
Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.
Asunto(s)
Eucariontes/genética , Transferencia de Gen Horizontal/genética , Operón/genética , Bacterias/genética , Escherichia coli/genética , Células Eucariotas , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Saccharomycetales/genética , Sideróforos/genéticaRESUMEN
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.
Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genéticaRESUMEN
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Asunto(s)
Cactaceae , Cactaceae/microbiología , Cactaceae/genética , Filogenia , Levaduras/genética , Genoma Fúngico/genética , Evolución Biológica , Evolución Molecular , Fenotipo , Transferencia de Gen Horizontal , Termotolerancia/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Aprendizaje AutomáticoRESUMEN
How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After the GALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, respectively), have an alternative galactose utilization pathway because they lack the GAL genes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype map, and their application will uncover novel biology, even in well-studied traits.
Asunto(s)
Galactosa , Aprendizaje Automático , Galactosa/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genéticaRESUMEN
The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.
Asunto(s)
Biodiversidad , Ecosistema , Clima , Bosques , Carbono , LevadurasRESUMEN
Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.
Asunto(s)
Enterobactina , Evolución Molecular , Operón , Filogenia , Enterobactina/metabolismo , Enterobactina/genética , Sideróforos/metabolismo , Sideróforos/genética , Genes Fúngicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transferencia de Gen HorizontalRESUMEN
Yeasts in the subphylum Saccharomycotina are found across the globe in disparate ecosystems. A major aim of yeast research is to understand the diversity and evolution of ecological traits, such as carbon metabolic breadth, insect association, and cactophily. This includes studying aspects of ecological traits like genetic architecture or association with other phenotypic traits. Genomic resources in the Saccharomycotina have grown rapidly. Ecological data, however, are still limited for many species, especially those only known from species descriptions where usually only a limited number of strains are studied. Moreover, ecological information is recorded in natural language format limiting high throughput computational analysis. To address these limitations, we developed an ontological framework for the analysis of yeast ecology. A total of 1,088 yeast strains were added to the Ontology of Yeast Environments (OYE) and analyzed in a machine-learning framework to connect genotype to ecology. This framework is flexible and can be extended to additional isolates, species, or environmental sequencing data. Widespread adoption of OYE would greatly aid the study of macroecology in the Saccharomycotina subphylum.
Asunto(s)
Ecosistema , Ecología , Ascomicetos/genética , Ascomicetos/clasificación , Genotipo , Aprendizaje Automático , Genoma Fúngico/genéticaRESUMEN
In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.
Asunto(s)
Saccharomycetales , Vino , Fermentación , Filogenia , Saccharomycetales/genética , Pichia/genética , Secuencia de Bases , Análisis de Secuencia de ADN , ADN de Hongos/genética , ADN Espaciador Ribosómico/genéticaRESUMEN
The â¼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, â¼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.
Asunto(s)
Ascomicetos , Filogenia , LevadurasRESUMEN
A new species of the yeast genus Blastobotrys was discovered on ancient ship timbers in the Netherlands. The species had developed on the wood of a river barge dating to the Roman period. The growth occurred after the preservative polyethylene glycol (PEG 4000) was washed out of some of the timbers due to an undetected leak in the storage unit. Mycological analysis of various timber samples revealed the presence of Microascus melanosporus (predominant), Microascus paisii, a member of the Acremonium chrysogenum-clade, and a new Blastrobotrys species. The new species produced sporothrix-like conidiophores with clavate blastoconidia (3-7 × 1-3.5 µm) and was found to be osmotolerant, capable of growth on low water activity media like malt yeast 50% glucose agar (MY50G). In this article we formally describe and introduce Blastrobotrys nigripullensis (CBS 17879 T) based on its morphology, physiology and phylogenetic placement.
Asunto(s)
Saccharomycetales , Filogenia , Países Bajos , Levaduras , ADN de Hongos , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica , Madera/microbiologíaRESUMEN
A novel budding yeast species was isolated from a soil sample collected in the United States of America. Phylogenetic analyses of multiple loci and phylogenomic analyses conclusively placed the species within the genus Pichia. Strain yHMH446 falls within a clade that includes Pichia norvegensis, Pichia pseudocactophila, Candida inconspicua, and Pichia cactophila. Whole genome sequence data were analyzed for the presence of genes known to be important for carbon and nitrogen metabolism, and the phenotypic data from the novel species were compared to all Pichia species with publicly available genomes. Across the genus, including the novel species candidate, we found that the inability to use many carbon and nitrogen sources correlated with the absence of metabolic genes. Based on these results, Pichia galeolata sp. nov. is proposed to accommodate yHMH446T (=NRRL Y-64187 = CBS 16864). This study shows how integrated taxogenomic analysis can add mechanistic insight to species descriptions.
Asunto(s)
Pichia , Suelo , Pichia/genética , Filogenia , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Levaduras/genética , Carbono , Nitrógeno , Análisis de Secuencia de ADNRESUMEN
Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
Although C. albicans remains the major pathogenic yeast, other previously rare or even novel species are on the rise in the clinic. The most notorious example is the rapid global emergence of multidrug-resistant C. auris. Here we describe its novel sibling species C. khanbhai.
Asunto(s)
Candidiasis , Infecciones Fúngicas Invasoras , Animales , Candidiasis/microbiología , Candidiasis/veterinaria , Saccharomyces cerevisiae , Candida/genética , Infecciones Fúngicas Invasoras/veterinaria , AntifúngicosRESUMEN
During studies of yeasts associated with soil in a Cerrado-Atlantic Rain Forest ecotone site in Brazil, three orange-pigmented yeast strains were isolated from samples collected in Minas Gerais state, Brazil. Molecular analyses combining the 26S rRNA gene (D1/D2 domains) and the internal transcribed spacer (ITS) sequences as well as whole-genome sequence data showed that these strains could not be ascribed to any known species in the basidiomycetous genus Phaffia, and thus they are considered to represent a novel species for which the name Phaffia brasiliana sp. nov. is proposed. The holotype is CBS 16121T and the MycoBank number is MB 839315. The occurrence of P. brasiliana in a tropical region is unique for the genus, since all other species occur in temperate regions. Two factors appear to contribute to the distribution of the novel taxon: first, the region where it was found has relatively moderate temperature ranges and, second, an adaptation to grow or withstand temperatures higher than those of the other species in the genus seems to be in place.
Asunto(s)
Basidiomycota/clasificación , Filogenia , Bosque Lluvioso , Microbiología del Suelo , Basidiomycota/aislamiento & purificación , Brasil , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The six synonyms currently accepted under Saccharomycodes ludwigii were investigated for by phenotypic properties, however, the sequence diversity of the rRNA and protein coding genes have not yet been determined. Nine strains including the type strains of synonyms of S. ludwigii deposited in the CBS yeast collection, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, were analyzed using a multi-locus sequence analysis (MLSA) approach that included sequences of 18S ribosomal RNA (rRNA), the D1/D2 domains of the 26S rRNA, the ITS region (including the 5.8S rRNA) and fragments of genes encoding the largest subunit of the RNA polymerase II (RPB1 and RPB2) and translation elongation factor 1-α (TEF1). Our results showed that the nine strains have identical D1/D2, 18S and RPB2 sequences and similar ITS, RPB1 and TEF1 sequences, which indicated that they are conspecific. In addition, a novel species of Saccharomycodes, S. pseudoludwigii sp. nov. (type CGMCC 2.4526 T) that was isolated from fruit and tree bark in China, is proposed. The MycoBank number of this new species is MB 811,650.
Asunto(s)
Nucleótidos , Saccharomycetales , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Filogenia , ARN Ribosómico/genética , ARN Ribosómico 18S , Saccharomycetales/genética , Análisis de Secuencia de ADNRESUMEN
The majority of Suhomyces species have been isolated from fungus-feeding insects and particularly from the gut of beetles. In the present study, seven yeast strains were isolated from the gut of Drosophila species feeding on gleba, the spore-bearing inner mass, of a stinkhorn mushroom belonging to the family Phallaceae. Based on phenotypic, biochemical characterization and sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer (ITS) region, two of these yeast strains, DGY3 and DGY4, represented a novel species of the genus Suhomyces. The novel species is closely related to an undescribed species of Candida ST-370 (DQ404513) and with Suhomyces canberraensis, wherein, the novel species differs from S. canberraensis by 40 nucleotide substitutions and three gaps (7.7â% sequence variation) in the D1/D2 region and 50 nucleotide substitutions and seven gaps (13.7â% sequence variation) in the ITS region. Several morphological and physiological differences were also observed between S. canberraensis and the strains obtained during this study. These data support the proposal of Suhomyces drosophilae as a novel species, with DGY3T as the holotype and CBS 16329T and MCC 1871T as ex-type strains.
Asunto(s)
Drosophila/microbiología , Filogenia , Saccharomycetales/clasificación , Agaricales , Animales , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , India , Técnicas de Tipificación Micológica , Saccharomycetales/aislamiento & purificaciónRESUMEN
Three strains originating from insect frass in South Africa, yellow foxglove in Hungary and soil in France, were characterised phenotypically and by sequencing of the D1/D2 domain of the large subunit and the ITS1-5.8S-ITS2 (ITS)-region of the rRNA gene. The strains have identical D1/D2 domain sequences and only one strain shows a 1 bp indel in a 9 bp homopolymer A/T repeat within the ITS-region. Based on sequence analysis Hyphopichia burtonii is the closest related species. The investigated strains differ from the type strain of H. burtonii by 1.9% (9 substitutions and an indel) in the D1/D2 domain and by 23 substitutions and 21-22 indels in the ITS-region. Since the sequence variability is very low among the three strains and the sequence divergence with the closely related H. burtonii exceeds the level generally encountered between species we propose the new species Hyphopichia lachancei f.a., sp. nov. to accommodate the three novel strains. From H. burtonii the new species can be distinguished phenotypically by its inability to ferment cellobiose and by the formation of endospores (Holotype: CBS 5999T; Isotype: NCAIM Y.02228T; MycoBank no.: MB833616).
Asunto(s)
Saccharomycetales , Animales , Celobiosa/metabolismo , ADN de Hongos , ADN Ribosómico , ADN Espaciador Ribosómico/genética , Digitalis/microbiología , Heces/microbiología , Francia , Hungría , Insectos/microbiología , Estadios del Ciclo de Vida , Fenotipo , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo , Microbiología del Suelo , SudáfricaRESUMEN
Ethanol production at high temperatures has garnered much interest in recent years and a key factor is the availability of thermotolerant yeasts. During an investigation on the diversity of thermotolerant yeasts from different habitats, a novel yeast species from the spent wash of a distillery unit associated with a sugar factory was isolated. Phylogenetic analysis of D1/D2 large subunit and ITS rRNA genes placed this species in the ascomycetous genus Wickerhamiella. The novel species can be distinguished from the closely related species Wickerhamiella pararugosa using these rRNA gene regions. The cells of the new species are ovoid to ellipsoid with a diameter of 3.5-6.0×2.4-3.10 µm, while W. pararugosa cells are cylindrical with a cell diameter of 1.5-3.0×6-23 µm. This novel species represents, together with Wickerhamiella cacticola, one of the two most thermotolerant yeast species in the genus Wickerhamiella, able to grow at 42 °C. Wickerhamiella shivajii sp. nov. is proposed during this study.
Asunto(s)
Filogenia , Saccharomycetales/clasificación , Aguas Residuales/microbiología , ADN de Hongos/genética , Etanol , India , Técnicas de Tipificación Micológica , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADNRESUMEN
Three strains, representing a novel anamorphic and d-xylose-fermenting yeast species, were isolated from moss (ST-302T), seawater (ST-1169) and peat (DMKU-XE12) collected from the southern part of Thailand. The three strains had identical sequences of the D1/D2 regions of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions. Candida flosculorum CBS 10566T and Candida sharkiensis CBS 11368T were the most closely related species with 7.9â% nucleotide substitutions in the D1/D2 regions of the LSU rRNA gene, and 10.3 and 12.6% nucleotide substitutions in the ITS regions, respectively. Phylogenetic analysis based on the concatenated sequences of the ITS and the D1/D2 regions confirmed that the three strains represented a distinct anamorphic species in the Clavispora clade. Therefore, the three strains were described as a novel species, for which we propose the name Candida xylosifermentans sp. nov.
Asunto(s)
Candida/clasificación , Filogenia , Xilosa/metabolismo , Briófitas/microbiología , Candida/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Fermentación , Técnicas de Tipificación Micológica , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo , TailandiaRESUMEN
A Citizen Science initiative by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum gave rise to a project where fungal and yeast isolates were obtained and identified from Dutch soil samples. During the current study, 386 yeast strains were isolated from 157 different locations in the Netherlands. These strains were identified using sequence data of the large-subunit rRNA gene (D1/D2 region) and the internal transcribed spacer 1 and 2 regions. A total of 53 different yeast species were found as well as 15 potentially novel species. Six novel ascomycetous species are described during this study that include Hanseniaspora mollemarum sp. nov., Ogataea degrootiae sp. nov., Pichia gijzeniarum sp. nov., Saccharomycopsis oosterbeekiorum sp. nov., Trichomonascus vanleenenius sp. nov. and Zygoascus flipseniorum sp. nov. This study made it possible to incorporate numerous yeast isolates into the CBS collection without any restrictions, which make these isolates readily available for use by others. Many of the isolates represented species of which only a few isolates or even only a single ex-type strain were available. Therefore, it is a clear indication that such biodiversity-orientated Citizen Science projects can enrich the pool of available yeasts for future research projects.