Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Nutr Biochem ; 100: 108907, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801693

RESUMEN

DNA methylation is dynamically regulated in metabolic diseases, but it remains unclear whether the changes are causal or consequential. Therefore, we used a longitudinal approach to refine the onset of metabolic and DNA methylation changes at high temporal resolution. Male C57BL/6N mice were fed with 60 % high-fat diet (HFD) for up to 12 weeks and metabolically characterized weekly. Liver was collected after 1, 2, 4, 5, 6, 7, 8, and 12 weeks and hepatic DNA methylation and gene expression were analyzed. A subset of obese mice underwent vertical sleeve gastrectomy (VSG) or metformin treatment and livers were studied. Distinct hepatic gene expression patterns developed upon feeding HFD, with genes from the fatty acid metabolism pathway being predominantly altered. When comparing metabolic data with gene expression and DNA methylation, in particular Fgf21 DNA methylation decreased before the onset of increased Fgf21 expression and metabolic changes. Neither weight loss induced by VSG nor improved glucose tolerance by metformin treatment could revert hepatic Fgf21 DNA methylation or expression. Our data emphasize the dynamic induction of DNA methylation upon metabolic stimuli. Reduced Fgf21 DNA methylation established before massive overexpression of Fgf21, which is likely an adaptive effort of the liver to maintain glucose homeostasis despite the developing insulin resistance and steatosis. Fgf21 DNA methylation resisted reversion by intervention strategies, illustrating the long-term effects of unhealthy lifestyle. Our data provide a temporal roadmap to the development of hepatic insulin resistance, comprehensively linking DNA methylation with gene expression and metabolic data.


Asunto(s)
Metilación de ADN , Factores de Crecimiento de Fibroblastos/genética , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Animales , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Transcriptoma , Pérdida de Peso
2.
Exp Clin Endocrinol Diabetes ; 129(9): 674-682, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32434239

RESUMEN

OBJECTIVE: The risk to develop type 2 diabetes increases with the amount of visceral adiposity presumably due to increased lipolysis and subsequent lipid accumulation in visceral organs. However, data describing the molecular regulation of these pathways in humans are rare. We tested if genes of the lipogenic and lipolytic pathways are associated with glucose intolerance independently of obesity in visceral adipose tissue (VAT) of obese subjects. Moreover, we studied DNA methylation of FASN (fatty acid synthase), that catalyses the synthesis of long-chain fatty acids, in VAT of the same subjects and whether it is associated with metabolic traits. SUBJECTS AND METHODS: Visceral adipose tissue biopsies and blood samples were taken from 93 severely obese subjects undergoing bariatric surgery. Subjects were grouped in low HbA1c (L-HbA1c, HbA1c<6.5 %) and high HbA1c (H-HbA1c, HbA1c≥6.5 %) groups and expression of genes from the lipogenic and lipolytic pathways was analysed by TaqMan qPCR. DNA methylation of FASN was quantified by bisulfite-pyrosequencing. RESULTS: FASN expression was downregulated in visceral fat from subjects with high HbA1c (p = 0.00009). Expression of other lipogenetic (SCD, ELOVL6) or lipolytic genes (ADRB3, PNPLA2) and FABP4 was not changed. DNA methylation of FASN was increased at a regulatory ChoRE recognition site in the H-HbA1c-subgroup and correlated negatively with FASN mRNA (r = - 0.302, p = 0.0034) and positively with HbA1c (r = 0.296, p = 0.0040) and blood glucose (r = 0.363, p = 0.0005). CONCLUSIONS: Epigenetic downregulation of FASN in visceral adipose tissue of obese subjects might contribute to limited de novo lipogenesis of important insulin sensitizing fatty acids and could thereby contribute to glucose intolerance and the development of type 2 diabetes independently of obesity.


Asunto(s)
Epigénesis Genética/fisiología , Acido Graso Sintasa Tipo I/metabolismo , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Grasa Intraabdominal/metabolismo , Obesidad Mórbida/metabolismo , Adulto , Metilación de ADN/fisiología , Regulación hacia Abajo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/sangre
3.
Epigenomics ; 11(8): 885-897, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31169416

RESUMEN

Aim: Validation of epigenome-wide association studies is sparse. Therefore, we evaluated the methylation markers cg06500161 (ABCG1) and cg11024682 (SREBF1) as classifiers for diabetes stratification. Patients & methods: DNA methylation was measured in blood (n = 167), liver (n = 99) and visceral adipose tissue (n = 99) of nondiabetic or Type 2 diabetic subjects by bisulfite pyrosequencing. Results: DNA methylation at cg11024682 in blood and liver correlated with BMI. Methylation at cg06500161 was influenced by the adjacent SNP rs9982016. Insulin-resistant and sensitive subjects could be stratified by DNA methylation status in blood or visceral adipose tissue. Conclusion: DNA methylation at both loci in blood presents a promising approach for risk group stratification and could be valuable for personalized Type 2 diabetes risk prediction in the future.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Diabetes Mellitus Tipo 2/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Metilación de ADN , Diabetes Mellitus Tipo 2/sangre , Marcadores Genéticos/genética , Humanos , Insulina/metabolismo
4.
Endocr Connect ; 7(12): 1448-1456, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30496129

RESUMEN

Hepatic thyroid hormone signaling has an important role in the development and progression of nonalcoholic steatohepatitis (NASH). While the systemic levels of thyroid hormone might remain stable, there is evidence that the intracellular signaling machinery consisting of transporters, deiodinases and receptors could be altered in NASH. However, clinical material from human liver biopsies of individuals with NASH has not been studied to date. In a cross-sectional study, we analyzed 85 liver biopsies from patients with different stages of NASH that underwent bariatric surgery. Using qPCR, we analyzed gene expression of thyroid hormone transporters NTCP (SLC10A1), MCT8 (SLC16A2) and OATP1C1 (SLCO1C1), thyroid hormone receptor α and ß (THRA and THRB) and deiodinase type I, II and III (DIO1, DIO2, DIO3). The expression was correlated with serum TSH, triglyceride, HbA1c and NASH score and corrected for age or gender if required. While DIO2, DIO3 and SLCO1C1 were not expressed in human liver, we observed a significant negative correlation of THRB and DIO1 with age, and SLC16A2 with gender. THRB expression was also negatively associated with serum triglyceride levels and HbA1c. More importantly, its expression was inversely correlated with NASH score and further declined with age. Our data provide unique insight into the mRNA expression of thyroid hormone transporters, deiodinases and receptors in the human liver. The findings allow important conclusions on the intrahepatic mechanisms governing thyroid hormone action, indicating a possible tissue resistance to the circulating hormone in NASH, which becomes more prominent in advanced age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA