Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 209(8): 1574-1585, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165184

RESUMEN

Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting ß2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced ß2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and ß2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.


Asunto(s)
Antígenos CD18 , Neutrófilos , Animales , Antígenos CD18/metabolismo , Calcio/metabolismo , Adhesión Celular , Guanosina , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Polifosfatos , Proteína de Unión al GTP rac1/metabolismo
2.
J Neurosci ; 41(49): 10034-10053, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34663629

RESUMEN

Traumatic brain injury (TBI) results in disrupted brain function following impact from an external force and is a risk factor for sporadic Alzheimer's disease (AD). Although neurologic symptoms triggered by mild traumatic brain injuries (mTBI), the most common form of TBI, typically resolve rapidly, even an isolated mTBI event can increase the risk to develop AD. Aberrant accumulation of amyloid ß peptide (Aß), a cleaved fragment of amyloid precursor protein (APP), is a key pathologic outcome designating the progression of AD following mTBI and has also been linked to impaired axonal transport. However, relationships among mTBI, amyloidogenesis, and axonal transport remain unclear, in part because of the dearth of human models to study the neuronal response following mTBI. Here, we implemented a custom-microfabricated device to deform neurons derived from human-induced pluripotent stem cells, derived from a cognitively unimpaired male individual, to mimic the mild stretch experienced by neurons during mTBI. Although no cell lethality or cytoskeletal disruptions were observed, mild stretch was sufficient to stimulate rapid amyloidogenic processing of APP. This processing led to abrupt cessation of APP axonal transport and progressive formation of aberrant axonal accumulations that contained APP, its processing machinery, and amyloidogenic fragments. Consistent with this sequence of events, stretch-induced defects were abrogated by reducing amyloidogenesis either pharmacologically or genetically. In sum, we have uncovered a novel and manipulable stretch-induced amyloidogenic pathway directly responsible for APP axonal transport dysregulation. Our findings may help to understand and ultimately mitigate the risk of developing AD following mTBI.SIGNIFICANCE STATEMENT Mild traumatic brain injury is a risk factor for sporadic Alzheimer's disease (AD). Increased amyloid ß peptide generation after injury may drive this risk. Here, by using a custom-built device to impose mild stretch to human neurons, we found that stretch triggers amyloid precursor protein (APP) cleavage, and thus amyloid ß peptide generation, consequently disrupting APP axonal transport. Compellingly, protecting APP from cleavage was sufficient to spare axonal transport dysregulation and the consequent aberrant axonal accumulation of APP. Supporting such protective mechanism, the expression of the AD-protective APPA673T genetic variant conferred protection against stretch-induced APP axonal transport phenotypes. Our data reveal potential subcellular pathways contributing to the development of AD-associated phenotypes following mild traumatic brain injury, and putative strategies for intervening in these pathways.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Alzheimer/etiología , Conmoción Encefálica/complicaciones , Conmoción Encefálica/metabolismo , Conmoción Encefálica/patología , Técnicas de Cultivo de Célula/métodos , Humanos , Células Madre Pluripotentes Inducidas , Masculino
3.
Mol Syst Biol ; 17(12): e10505, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898015

RESUMEN

Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.


Asunto(s)
Actomiosina , Dictyostelium , Citoesqueleto de Actina , Actinas , Movimiento Celular , Tracción
4.
Hum Mol Genet ; 28(9): 1498-1514, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590647

RESUMEN

Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Variación Genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal , Axones/metabolismo , Caenorhabditis elegans , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Mutación , Fosforilación , Unión Proteica , Vesículas Sinápticas/metabolismo , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/patología
5.
Biophys J ; 118(11): 2816-2828, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32348719

RESUMEN

Bacterial chemotaxis, the directed migration of bacteria in a gradient of chemoattractant, is one of the most well-studied and well-understood processes in cell biology. On the other hand, bacterial thermotaxis, the directed migration of bacteria in a gradient of temperature, is understood relatively poorly, with somewhat conflicting reports by different groups. One of the reasons for that is the relative technical difficulty of the generation of well-defined gradients of temperature that are sufficiently steep to elicit readily detectable thermotaxis. Here, we used a specially designed microfluidic device to study thermotaxis of Escherichia coli in a broad range of thermal gradients with a high rate of data collection. We found that in shallow temperature gradients with narrow temperature ranges, E. coli tended to aggregate near a sidewall of the gradient channel at either the lowest or the highest temperature. On the other hand, in sufficiently steep gradients with wide temperature ranges, E. coli aggregated at intermediate temperatures, with maximal cell concentrations found away from the sidewalls. We observed this intermediate temperature aggregation in a motility buffer that did not contain any major chemoattractants of E. coli, in contradiction to some previous reports, which suggested that this type of aggregation required the presence of at least one major chemoattractant in the medium. Even more surprisingly, the aggregation temperature strongly depended on the gradient steepness, decreasing by ∼10° as the steepness was increased from 27 to 53°C/mm. Our experiments also highlight the fact that assessments of thermal gradients by changes in fluorescence of temperature-sensitive fluorescent dyes need to account for thermophoresis of the dyes.


Asunto(s)
Escherichia coli , Taxia , Quimiotaxis , Dispositivos Laboratorio en un Chip , Temperatura
6.
Proc Natl Acad Sci U S A ; 114(20): 5195-5200, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28465431

RESUMEN

The intermediate filament vimentin is required for cells to transition from the epithelial state to the mesenchymal state and migrate as single cells; however, little is known about the specific role of vimentin in the regulation of mesenchymal migration. Vimentin is known to have a significantly greater ability to resist stress without breaking in vitro compared with actin or microtubules, and also to increase cell elasticity in vivo. Therefore, we hypothesized that the presence of vimentin could support the anisotropic mechanical strain of single-cell migration. To study this, we fluorescently labeled vimentin with an mEmerald tag using TALEN genome editing. We observed vimentin architecture in migrating human foreskin fibroblasts and found that network organization varied from long, linear bundles, or "fibers," to shorter fragments with a mesh-like organization. We developed image analysis tools employing steerable filtering and iterative graph matching to characterize the fibers embedded in the surrounding mesh. Vimentin fibers were aligned with fibroblast branching and migration direction. The presence of the vimentin network was correlated with 10-fold slower local actin retrograde flow rates, as well as spatial homogenization of actin-based forces transmitted to the substrate. Vimentin fibers coaligned with and were required for the anisotropic orientation of traction stresses. These results indicate that the vimentin network acts as a load-bearing superstructure capable of integrating and reorienting actin-based forces. We propose that vimentin's role in cell motility is to govern the alignment of traction stresses that permit single-cell migration.


Asunto(s)
Vimentina/química , Vimentina/fisiología , Actinas/química , Animales , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Elasticidad , Transición Epitelial-Mesenquimal/fisiología , Fibroblastos/química , Humanos , Filamentos Intermedios/química , Filamentos Intermedios/fisiología , Fenómenos Mecánicos , Microtúbulos/química , Fibras de Estrés/química , Fibras de Estrés/fisiología , Vimentina/metabolismo , Soporte de Peso
7.
Soft Matter ; 15(9): 2043-2050, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30724956

RESUMEN

Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.


Asunto(s)
Adhesión Celular , Movimiento Celular , Humectabilidad , Dictyostelium/citología , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 113(41): 11414-11419, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681630

RESUMEN

The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the "minigut." This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction-diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon.


Asunto(s)
Bacterias/crecimiento & desarrollo , Tracto Gastrointestinal/microbiología , Peristaltismo , Reología , Recuento de Colonia Microbiana , Difusión , Modelos Biológicos
9.
Nat Methods ; 12(7): 653-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030446

RESUMEN

We present a reconstruction algorithm that resolves cellular tractions in diffraction-limited nascent adhesions (NAs). The enabling method is the introduction of sparsity regularization to the solution of the inverse problem, which suppresses noise without underestimating traction magnitude. We show that NAs transmit a distinguishable amount of traction and that NA maturation depends on traction growth rate. A software package implementing this numerical approach is provided.


Asunto(s)
Adhesión Celular , Microscopía Fluorescente/métodos , Células Cultivadas , Programas Informáticos
10.
J Immunol ; 196(9): 3828-33, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976957

RESUMEN

Leukocyte recruitment to inflammation sites progresses in a multistep cascade. Chemokines regulate multiple steps of the cascade, including arrest, transmigration, and chemotaxis. The most important chemokine receptor in mouse neutrophils is CXCR2, which couples through Gαi2- and Gαi3-containing heterotrimeric G proteins. Neutrophils arrest in response to CXCR2 stimulation. This is defective in Gαi2-deficient neutrophils. In this study, we show that Gαi3-deficient neutrophils showed reduced transmigration but normal arrest in mice. We also tested Gαi2- or Gαi3-deficient neutrophils in a CXCL1 gradient generated by a microfluidic device. Gαi3-, but not Gαi2-, deficient neutrophils showed significantly reduced migration and directionality. This was confirmed in a model of sterile inflammation in vivo. Gαi2-, but not Gαi3-, deficient neutrophils showed decreased Ca(2+) flux in response to CXCR2 stimulation. Conversely, Gαi3-, but not Gαi2-, deficient neutrophils exhibited reduced AKT phosphorylation upon CXCR2 stimulation. We conclude that Gαi2 controls arrest and Gαi3 controls transmigration and chemotaxis in response to chemokine stimulation of neutrophils.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neutrófilos/inmunología , Animales , Señalización del Calcio/genética , Movimiento Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiotaxis/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Unión Proteica , Receptores de Interleucina-8B/metabolismo , Migración Transendotelial y Transepitelial/genética
11.
Nature ; 488(7411): 399-403, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22763437

RESUMEN

Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm−2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.


Asunto(s)
Rodamiento de Leucocito , Neutrófilos/citología , Neutrófilos/metabolismo , Resistencia al Corte , Adhesividad , Animales , Antígenos CD/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Selectina E/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microvasos/metabolismo , Neutrófilos/inmunología , Selectina-P/metabolismo , Células TH1/citología , Células TH1/inmunología , Vénulas/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(40): 14448-53, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25249632

RESUMEN

Natural chemical gradients to which cells respond chemotactically are often dynamic, with both spatial and temporal components. A primary example is the social amoeba Dictyostelium, which migrates to the source of traveling waves of chemoattractant as part of a self-organized aggregation process. Despite its physiological importance, little is known about how cells migrate directionally in response to traveling waves. The classic back-of-the-wave problem is how cells chemotax toward the wave source, even though the spatial gradient reverses direction in the back of the wave. Here, we address this problem by using microfluidics to expose cells to traveling waves of chemoattractant with varying periods. We find that cells exhibit memory and maintain directed motion toward the wave source in the back of the wave for the natural period of 6 min, but increasingly reverse direction for longer wave periods. Further insights into cellular memory are provided by experiments quantifying cell motion and localization of a directional-sensing marker after rapid gradient switches. The results can be explained by a model that couples adaptive directional sensing to bistable cellular memory. Our study shows how spatiotemporal cues can guide cell migration over large distances.


Asunto(s)
Algoritmos , Quimiotaxis/fisiología , Dictyostelium/fisiología , Modelos Biológicos , AMP Cíclico/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Cinética , Microfluídica/métodos , Movimiento/fisiología , Factores de Tiempo , Proteínas ras/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(4): 1309-14, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23300286

RESUMEN

Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules.


Asunto(s)
Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Hielo , Animales , Fenómenos Biofísicos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Técnicas Analíticas Microfluídicas , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Tenebrio/metabolismo
14.
Appl Opt ; 54(24): 7195-204, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26368753

RESUMEN

We describe the design, fabrication, and testing of a 1.6 mm thick scleral contact lens providing both 1× and 2.8× magnified vision paths, intended for use as a switchable eye-borne telescopic low-vision aid. The F/9.7 telescopic vision path uses an 8.2 mm diameter annular entrance pupil and 4 internal reflections in a polymethyl methacrylate precision optic. This gas-impermeable insert is contained inside a smooth outer casing of rigid gas-permeable polymer, which also provides achromatic correction for refraction at the curved lens face. The unmagnified F/4.1 vision path is through the central aperture of the lens, with additional transmission between the annular telescope rings to enable peripheral vision. We discuss potential solutions for providing oxygenation for an extended wear version of the lens. The prototype lenses were characterized using a scale-model human eye, and telescope functionality was confirmed in a small-scale clinical (nondispensed) demonstration.


Asunto(s)
Lentes de Contacto , Diseño de Equipo , Adulto , Estudios de Cohortes , Simulación por Computador , Gases , Humanos , Interferometría/métodos , Degeneración Macular/terapia , Óptica y Fotónica , Oxígeno/química , Permeabilidad , Polímeros/química , Visión Ocular
15.
Am J Physiol Cell Physiol ; 307(2): C180-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24848114

RESUMEN

Enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium are attaching-and-effacing (A/E) pathogens that cause intestinal inflammation and diarrhea. The bacteria adhere to the intestinal epithelium, destroy microvilli, and induce actin-filled membranous pedestals but do not invade the mucosa. Adherence leads to activation of several host cell kinases, including FYN, n-SRC, YES, ABL, and ARG, phosphorylation of the bacterial translocated intimin receptor, and actin polymerization and pedestal formation in cultured cells. However, marked functional redundancy appears to exist between kinases, and their physiological importance in A/E pathogen infections has remained unclear. To address this question, we employed a novel dynamic in vitro infection model that mimics transient and short-term interactions in the intestinal tract. Screening of a kinase inhibitor library and RNA interference experiments in vitro revealed that ABL and platelet-derived growth factor (PDGF) receptor (PDGFR) kinases, as well as p38 MAP kinase, have unique, indispensable roles in early attachment of EPEC to epithelial cells under dynamic infection conditions. Studies with mutant EPEC showed that the attachment functions of ABL and PDGFR were independent of the intimin receptor but required bacterial bundle-forming pili. Furthermore, inhibition of ABL and PDGFR with imatinib protected against infection of mice with modest loads of C. rodentium, whereas the kinases were dispensable for high inocula or late after infection. These results indicate that ABL and PDGFR have indispensable roles in early A/E pathogen attachment to intestinal epithelial cells and for in vivo infection with limiting inocula but are not required for late intimate bacterial attachment or high inoculum infections.


Asunto(s)
Adhesión Bacteriana/fisiología , Escherichia coli Enteropatógena/metabolismo , Células Epiteliales/fisiología , Proteínas Oncogénicas v-abl/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Línea Celular , Escherichia coli Enteropatógena/citología , Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/microbiología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas v-abl/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética
16.
Nat Methods ; 8(3): 239-41, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21297620

RESUMEN

We combined rapid microfluidic mixing with single-molecule fluorescence resonance energy transfer to study the folding kinetics of the intrinsically disordered human protein α-synuclein. The time-resolution of 0.2 ms revealed initial collapse of the unfolded protein induced by binding with lipid mimics and subsequent rapid formation of transient structures in the encounter complex. The method also enabled analysis of rapid dissociation and unfolding of weakly bound complexes triggered by massive dilution.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Analíticas Microfluídicas/métodos , alfa-Sinucleína/química , Humanos , Cinética , Unión Proteica , Pliegue de Proteína
17.
Nature ; 446(7131): 46-51, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17310144

RESUMEN

The mating pathway in Saccharomyces cerevisiae has been the focus of considerable research effort, yet many quantitative aspects of its regulation still remain unknown. Using an integrated approach involving experiments in microfluidic chips and computational modelling, we studied gene expression and phenotypic changes associated with the mating response under well-defined pheromone gradients. Here we report a combination of switch-like and graded pathway responses leading to stochastic phenotype determination in a specific range of pheromone concentrations. Furthermore, we show that these responses are critically dependent on mitogen-activated protein kinase (MAPK)-mediated regulation of the activity of the pheromone-response-specific transcription factor, Ste12, as well as on the autoregulatory feedback of Ste12. In particular, both the switch-like characteristics and sensitivity of gene expression in shmooing cells to pheromone concentration were significantly diminished in cells lacking Kss1, one of the MAP kinases activated in the mating pathway. In addition, the dynamic range of gradient sensing of Kss1-deficient cells was reduced compared with wild type. We thus provide unsuspected functional significance for this kinase in regulation of the mating response.


Asunto(s)
Adaptación Biológica/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Adaptación Biológica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Microfluídica , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Feromonas/metabolismo , Feromonas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 107(21): 9656-9, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20457897

RESUMEN

Chemotaxis, the chemically guided movement of cells, plays an important role in several biological processes including cancer, wound healing, and embryogenesis. Chemotacting cells are able to sense shallow chemical gradients where the concentration of chemoattractant differs by only a few percent from one side of the cell to the other, over a wide range of local concentrations. Exactly what limits the chemotactic ability of these cells is presently unclear. Here we determine the chemotactic response of Dictyostelium cells to exponential gradients of varying steepness and local concentration of the chemoattractant cAMP. We find that the cells are sensitive to the steepness of the gradient as well as to the local concentration. Using information theory techniques, we derive a formula for the mutual information between the input gradient and the spatial distribution of bound receptors and also compute the mutual information between the input gradient and the motility direction in the experiments. A comparison between these quantities reveals that for shallow gradients, in which the concentration difference between the back and the front of a 10-mum-diameter cell is <5%, and for small local concentrations (<10 nM) the intracellular information loss is insignificant. Thus, external fluctuations due to the finite number of receptors dominate and limit the chemotactic response. For steeper gradients and higher local concentrations, the intracellular information processing is suboptimal and results in a smaller mutual information between the input gradient and the motility direction than would have been predicted from the ligand-receptor binding process.


Asunto(s)
Quimiotaxis , Dictyostelium/citología , AMP Cíclico/metabolismo
19.
Cell Syst ; 13(6): 488-498.e4, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35512710

RESUMEN

Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.


Asunto(s)
Bacillus subtilis , Biopelículas , Bacillus subtilis/metabolismo , Proliferación Celular , Estimulación Eléctrica , Matriz Extracelular/metabolismo
20.
J Leukoc Biol ; 111(4): 771-791, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34494308

RESUMEN

Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that ß2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited ß2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for ß2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of ß2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in ß2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects ß2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.


Asunto(s)
Antígenos CD18 , Neutrófilos , Antígenos CD18/metabolismo , Adhesión Celular , N-Formilmetionina Leucil-Fenilalanina , Infiltración Neutrófila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA