Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997788

RESUMEN

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Asunto(s)
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
J Neuroinflammation ; 21(1): 190, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095775

RESUMEN

Retinitis pigmentosa (RP), an inherited retinal disease, affects 1,5 million people worldwide. The initial mutation-driven photoreceptor degeneration leads to chronic inflammation, characterized by Müller cell activation and upregulation of CD44. CD44 is a cell surface transmembrane glycoprotein and the primary receptor for hyaluronic acid. It is involved in many pathological processes, but little is known about CD44's retinal functions. CD44 expression is also increased in Müller cells from our Pde6bSTOP/STOP RP mouse model. To gain a more detailed understanding of CD44's role in healthy and diseased retinas, we analyzed Cd44-/- and Cd44-/-Pde6bSTOP/STOP mice, respectively. The loss of CD44 led to enhanced photoreceptor degeneration, reduced retinal function, and increased inflammatory response. To understand the underlying mechanism, we performed proteomic analysis on isolated Müller cells from Cd44-/- and Cd44-/-Pde6bSTOP/STOP retinas and identified a significant downregulation of glutamate transporter 1 (SLC1A2). This downregulation was accompanied by higher glutamate levels, suggesting impaired glutamate homeostasis. These novel findings indicate that CD44 stimulates glutamate uptake via SLC1A2 in Müller cells, which in turn, supports photoreceptor survival and function.


Asunto(s)
Células Ependimogliales , Receptores de Hialuranos , Retinitis Pigmentosa , Transducción de Señal , Animales , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Ratones , Células Ependimogliales/metabolismo , Transducción de Señal/fisiología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Supervivencia Celular/fisiología , Ratones Transgénicos , Retina/metabolismo , Retina/patología
3.
J Neuroinflammation ; 21(1): 56, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388518

RESUMEN

Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.


Asunto(s)
Gliosis , Enfermedades de la Retina , Ratones , Animales , Humanos , Gliosis/metabolismo , Factor H de Complemento/genética , Ratones Endogámicos C57BL , Retina/metabolismo
4.
J Neuroinflammation ; 21(1): 33, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273366

RESUMEN

Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Neuroglía/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo
5.
Glia ; 71(2): 391-414, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334068

RESUMEN

The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.


Asunto(s)
Células Ependimogliales , Proteoma , Humanos , Ratones , Animales , Proteoma/metabolismo , Proteómica , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos , Neuroglía/metabolismo
6.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503976

RESUMEN

Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy-a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.


Asunto(s)
Células Ependimogliales/metabolismo , Homeostasis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Animales , Biomarcadores , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Inactivación de Genes , Gliosis/etiología , Gliosis/metabolismo , Gliosis/patología , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Especificidad de Órganos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Retina/metabolismo , Retina/patología
7.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502128

RESUMEN

Age-related macular degeneration (AMD), one of the leading causes of blindness worldwide, causes personal suffering and high socioeconomic costs. While there has been progress in the treatments for the neovascular form of AMD, no therapy is yet available for the more common dry form, also known as geographic atrophy. We analysed the retinal tissue in a mouse model of retinal degeneration caused by sodium iodate (NaIO3)-induced retinal pigment epithelium (RPE) atrophy to understand the underlying pathology. RNA sequencing (RNA-seq), qRT-PCR, Western blot, immunohistochemistry of the retinas and multiplex ELISA of the mouse serum were applied to find the pathways involved in the degeneration. NaIO3 caused patchy RPE loss and thinning of the photoreceptor layer. This was accompanied by the increased retinal expression of complement components c1s, c3, c4, cfb and cfh. C1s, C3, CFH and CFB were complement proteins, with enhanced deposition at day 3. C4 was upregulated in retinal degeneration at day 10. Consistently, the transcript levels of proinflammatory ccl-2, -3, -5, il-1ß, il-33 and tgf-ß were increased in the retinas of NaIO3 mice, but vegf-a mRNA was reduced. Macrophages, microglia and gliotic Müller cells could be a cellular source for local retinal inflammatory changes in the NaIO3 retina. Systemic complement and cytokines/chemokines remained unaltered in this model of NaIO3-dependent retinal degeneration. In conclusion, systemically administered NaIO3 promotes degenerative and inflammatory processes in the retina, which can mimic the hallmarks of geographic atrophy.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Susceptibilidad a Enfermedades , Yodatos/efectos adversos , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Animales , Apoptosis/genética , Apoptosis/inmunología , Proteínas del Sistema Complemento/genética , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata , Inmunohistoquímica , Ratones , Degeneración Retiniana/patología
8.
J Neuroinflammation ; 17(1): 1, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900165

RESUMEN

BACKGROUND: Age-related macular degeneration is characterized by the accumulation of subretinal macrophages and the degeneration of cones, but mainly of rods. We have previously shown that Mononuclear Phagocytes-derived IL-1ß induces rod photoreceptor cell death during experimental subretinal inflammation and in retinal explants exposed to IL-1ß but the mechanism is unknown. METHODS: Retinal explants were culture in the presence of human monocytes or IL-1ß and photoreceptor cell survival was analyzed by TUNEL labeling. Glutamate concentration and transcription levels of gene involved in the homeostasis of glutamate were analyzed in cell fractions of explant cultured or not in the presence of IL-1ß. Glutamate receptor antagonists were evaluated for their ability to reduce photoreceptor cell death in the presence of IL1-ß or monocytes. RESULTS: We here show that IL-1ß does not induce death in isolated photoreceptors, suggesting an indirect effect. We demonstrate that IL-1ß leads to glutamate-induced rod photoreceptor cell death as it increases the extracellular glutamate concentrations in the retina through the inhibition of its conversion to glutamine in Müller cells, increased release from Müller cells, and diminished reuptake. The inhibition of non-NMDA receptors completely and efficiently prevented rod apoptosis in retinal explants cultured in the presence of IL-1ß or, more importantly, in vivo, in a model of subretinal inflammation. CONCLUSIONS: Our study emphasizes the importance of inflammation in the deregulation of glutamate homeostasis and provides a comprehensive mechanism of action for IL-1ß-induced rod degeneration.


Asunto(s)
Ácido Glutámico/metabolismo , Homeostasis/fisiología , Interleucina-1beta/toxicidad , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Técnicas de Cocultivo , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos
9.
Graefes Arch Clin Exp Ophthalmol ; 258(2): 221-230, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31734719

RESUMEN

Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.


Asunto(s)
Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo , Animales , Retinopatía Diabética/patología , Humanos , Retina/patología , Transducción de Señal
10.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187113

RESUMEN

Stargardt macular degeneration is an inherited retinal disease caused by mutations in the ATP-binding cassette subfamily A member 4 (ABCA4) gene. Here, we characterized the complement expression profile in ABCA4-/- retinae and aligned these findings with morphological markers of retinal degeneration. We found an enhanced retinal pigment epithelium (RPE) autofluorescence, cell loss in the inner retina of ABCA4-/- mice and demonstrated age-related differences in complement expression in various retinal cell types irrespective of the genotype. However, 24-week-old ABCA4-/- mice expressed more c3 in the RPE and fewer cfi transcripts in the microglia compared to controls. At the protein level, the decrease of complement inhibitors (complement factor I, CFI) in retinae, as well as an increased C3b/C3 ratio in the RPE/choroid and retinae of ABCA4-/-, mice was confirmed. We showed a corresponding increase of the C3d/C3 ratio in the serum of ABCA4-/- mice, while no changes were observed for CFI. Our findings suggest an overactive complement cascade in the ABCA4-/- retinae that possibly contributes to pathological alterations, including microglial activation and neurodegeneration. Overall, this underpins the importance of well-balanced complement homeostasis to maintain retinal integrity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas del Sistema Complemento/metabolismo , Enfermedad de Stargardt/metabolismo , Animales , Coroides/metabolismo , Activación de Complemento/fisiología , Modelos Animales de Enfermedad , Femenino , Degeneración Macular/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
11.
J Neuroinflammation ; 16(1): 43, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777091

RESUMEN

BACKGROUND: Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina-microglia and Müller cells. METHODS: Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. RESULTS: We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia. After transient ischemia, TSPO as a marker of activation was upregulated to similar levels in microglia as compared to their counterparts in healthy retinae irrespective of the treatment regimen. However, less microglia were found in XBD173-treated postischemic retinae at 3 days post-surgery (dps) which displayed a more ramified morphology than in retinae of vehicle-treated mice indicating a dampened microglia activation. Müller cells, the major retinal macroglia, show upregulation of the typical gliosis marker GFAP. Importantly, glutamine synthetase was more stably expressed in Müller glia of XBD173-treated postischemic retinae and homeostatic functions such as cellular volume regulation typically diminished in gliotic Müller cells remained functional. CONCLUSIONS: In sum, our data imply that beneficial effects of XBD173 treatment on the postischemic survival of inner retinal neurons were primarily mediated by stabilizing neurosupportive functions of glial cells.


Asunto(s)
Isquemia/patología , Purinas/uso terapéutico , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/patología , Neuronas Retinianas/efectos de los fármacos , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Arginasa/genética , Arginasa/metabolismo , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Regulación de la Expresión Génica/fisiología , Glutamato-Amoníaco Ligasa/metabolismo , Isquemia/complicaciones , Isquemia/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/patología , ARN Mensajero/metabolismo , Receptores de GABA/metabolismo , Retina/metabolismo , Retina/patología , Enfermedades de la Retina/complicaciones , Neuronas Retinianas/clasificación , Neuronas Retinianas/patología , Rodopsina/metabolismo
12.
Mol Cell Proteomics ; 15(2): 462-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26324419

RESUMEN

To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Müller cells in retinal pathologies - a topic still controversially discussed.


Asunto(s)
Células Ependimogliales/metabolismo , Microglía/metabolismo , Proteoma/genética , Proteómica , Animales , Astrocitos/metabolismo , Proliferación Celular/genética , Separación Celular , Células Ependimogliales/patología , Perfilación de la Expresión Génica , Humanos , Ratones , Microglía/patología , Neuroglía/metabolismo , Neuroglía/patología , Estrés Oxidativo/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal
13.
Glia ; 65(7): 1059-1071, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370368

RESUMEN

Nervous tissue is characterized by a tight structural association between glial cells and neurons. It is well known that glial cells support neuronal functions, but their role under pathologic conditions is less well understood. Here, we addressed this question in vivo using an experimental model of retinal ischemia and transgenic mice for glia-specific inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis. Transgene expression reduced glutamate, but not ATP release from single Müller cells, impaired glial volume regulation under normal conditions and reduced neuronal dysfunction and death in the inner retina during the early stages of ischemia. Our study reveals that the SNARE-dependent exocytosis in glial cells contributes to neurotoxicity during ischemia in vivo and suggests glial exocytosis as a target for therapeutic approaches.


Asunto(s)
Exocitosis/genética , Isquemia/complicaciones , Degeneración Nerviosa/etiología , Retina/patología , Células Ganglionares de la Retina/metabolismo , Proteínas SNARE/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/uso terapéutico , Células Ependimogliales/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Filamentos Intermedios/metabolismo , Isquemia/patología , Luz , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa C-alfa/metabolismo , Receptores Purinérgicos P2Y1/deficiencia , Receptores Purinérgicos P2Y1/genética , Proteínas SNARE/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
FASEB J ; 29(12): 4815-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26251181

RESUMEN

Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/genética , Retina/fisiopatología , Vimentina/genética , Animales , Supervivencia Celular , Electrorretinografía , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Vasos Retinianos/fisiopatología
15.
Neurochem Res ; 41(4): 677-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26446037

RESUMEN

Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K(+) current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K(+) currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 (-/-)) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K(+) currents in Müller cells from ischemic IP 3 R2 (-/-) retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 (-/-) mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/genética , Isquemia/patología , Retina/patología , Animales , Recuento de Células , Células Ependimogliales/patología , Gliosis/patología , Ratones Noqueados , Neuronas/patología
16.
Neurochem Res ; 41(10): 2598-2606, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27278757

RESUMEN

Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-ß1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-ß1 from Müller cells.


Asunto(s)
Endotelinas/farmacología , Células Ependimogliales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Ósmosis/efectos de los fármacos , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Tamaño de la Célula/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Ependimogliales/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuroglía/metabolismo , Presión Osmótica/efectos de los fármacos , Ratas Long-Evans , Ratas Sprague-Dawley , Retina/metabolismo
17.
Glia ; 63(2): 206-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25142016

RESUMEN

GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12 -like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis.


Asunto(s)
Regulación de la Expresión Génica/genética , Microglía/fisiología , Fagocitosis/genética , Receptores Lisofosfolípidos/deficiencia , Animales , Encéfalo/citología , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocinas CX3C , Movimiento Celular/genética , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Receptores Lisofosfolípidos/genética , Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
18.
Neurochem Res ; 40(4): 651-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25567481

RESUMEN

Retinal glial (Müller) cells release ATP upon osmotic stress or activation of metabotropic glutamate receptors. ATP inhibits the osmotic Müller cell swelling by activation of P2Y1 receptors. In the present study, we determined the molecular pathways of the ATP release from Müller cells in slices of the rat retina. Administration of the ATP/ADPase apyrase induced a swelling of Müller cells under hypoosmotic conditions, and prevented the swelling-inhibitory effect of glutamate, suggesting that swelling inhibition is mediated by extracellular ATP. A hypoosmotic swelling of Müller cells was also observed in the presence of a blocker of multidrug resistance channels (MK-571), a CFTR inhibitor (glibenclamide), and connexin hemichannel blockers (18-α-glycyrrhetinic acid, 100 µM carbenoxolone). The swelling-inhibitory effect of glutamate was prevented by MK-571, the connexin hemichannel blockers, and a pannexin-1 hemichannel blocker (5 µM carbenoxolone). The p-glycoprotein blocker verapamil had no effect. As revealed by single-cell RT-PCR, subpopulations of Müller cells expressed mRNAs for pannexin-1 and -2, and connexins 30, 30.3, 32, 43, 45, and 46. The data may suggest that rat Müller cells release ATP by multidrug resistance channels, CFTR, and connexin hemichannels in response to osmotic stress, while glutamate induces a release of ATP via multidrug resistance channels, connexin hemichannels, and pannexin-1.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Ependimogliales/metabolismo , Ácido Glutámico/metabolismo , Animales , Anexinas/genética , Conexinas/genética , Femenino , Masculino , Presión Osmótica , ARN Mensajero/genética , Ratas , Ratas Long-Evans , Transducción de Señal
19.
Pflugers Arch ; 466(10): 1859-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24705940

RESUMEN

The purine adenosine 5'-triphosphate (ATP) and its breakdown products, ADP and adenosine, act as intercellular messenger molecules throughout the nervous system. While ATP contributes to fast synaptic transmission via activation of ionotropic P2X receptors as well as neuromodulation via metabotropic P2Y receptors, ADP and adenosine only stimulate P2Y and P1 receptors, respectively, thereby adjusting neuronal performance. Often glial cells are recipient as well as source for extracellular ATP. Hence, purinergic neuron-glia signalling contributes bidirectionally to information processing in the nervous system, including sensory organs and brain areas computing sensory information. In this review, we summarize recent data of purinergic neuron-glia communication in two sensory systems, the visual and the olfactory systems. In both retina and olfactory bulb, ATP is released by neurons and evokes Ca(2+) transients in glial cells, viz. Müller cells, astrocytes and olfactory ensheathing cells. Glial Ca(2+) signalling, in turn, affects homeostasis of the nervous tissue such as volume regulation and control of blood flow. In addition, 'gliotransmitter' release upon Ca(2+) signalling--evoked by purinoceptor activation--modulates neuronal activity, thus contributing to the processing of sensory information.


Asunto(s)
Neuroglía/metabolismo , Neuronas/metabolismo , Receptores Purinérgicos/metabolismo , Retina/metabolismo , Animales , Humanos , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Retina/citología , Retina/fisiología , Transducción de Señal
20.
J Neurochem ; 131(3): 303-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25041175

RESUMEN

Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium-containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post-ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75(NTR) , and was prevented by blockers of metabotropic glutamate, P2Y1 , adenosine A1 , and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line-derived neurotrophic factor and transforming growth factor-ß1, but not epidermal growth factor and platelet-derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75(NTR) and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling. Cytotoxic cell swelling contributes to retinal neurodegeneration. Nerve growth factor (NGF) inhibits the osmotic swelling of glial cells by acting at TrkA, release of bFGF, and opening of K(+) and Cl(-) channels. The NGF-induced glial release of cytokines like bFGF inhibits the osmotic swelling of bipolar cells, suggesting that the neuroprotective effect of NGF is in part mediated by prevention of cytotoxic cell swelling.


Asunto(s)
Citocinas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo , Animales , Tamaño de la Célula/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/fisiología , Masculino , Presión Osmótica , Ratas , Ratas Long-Evans , Receptores de Factor de Crecimiento Nervioso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA