Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(1): 45-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177900

RESUMEN

Fusion of the outer mitochondrial membrane (OMM) is regulated by mitofusin 1 (MFN1) and 2 (MFN2), yet the differential contribution of each of these proteins is less understood. Mitochondrial carrier homolog 2 (MTCH2) also plays a role in mitochondrial fusion, but its exact function remains unresolved. MTCH2 overexpression enforces MFN2-independent mitochondrial fusion, proposedly by modulating the phospholipid lysophosphatidic acid (LPA), which is synthesized by glycerol-phosphate acyl transferases (GPATs) in the endoplasmic reticulum (ER) and the OMM. Here we report that MTCH2 requires MFN1 to enforce mitochondrial fusion and that fragmentation caused by loss of MTCH2 can be specifically counterbalanced by overexpression of MFN2 but not MFN1, partially independent of its GTPase activity and mitochondrial localization. Pharmacological inhibition of GPATs (GPATi) or silencing ER-resident GPATs suppresses MFN2's ability to compensate for the loss of MTCH2. Loss of either MTCH2, MFN2, or GPATi does not impair stress-induced mitochondrial fusion, whereas the combined loss of MTCH2 and GPATi or the combined loss of MTCH2 and MFN2 does. Taken together, we unmask two cooperative mechanisms that sustain mitochondrial fusion.


Asunto(s)
GTP Fosfohidrolasas , Lisofosfolípidos , Mitocondrias , Mitocondrias/genética , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Clin Exp Rheumatol ; 42(6): 1215-1223, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966946

RESUMEN

OBJECTIVES: The pathogenesis of fibromyalgia (FM), characterised by chronic widespread pain and fatigue, remains notoriously elusive, hampering attempts to develop disease modifying treatments. Mitochondria are the headquarters of cellular energy metabolism, and their malfunction has been proposed to contribute to both FM and chronic fatigue. Thus, the aim of the current pilot study, was to detect structural changes in mitochondria of peripheral blood mononuclear cells (PBMCs) of FM patients, using transmission electron microscopy (TEM). METHODS: To detect structural mitochondrial alterations in FM, we analysed PBMCs from seven patients and seven healthy controls, using TEM. Patients were recruited from a specialised Fibromyalgia Clinic at a tertiary medical centre. After providing informed consent, participants completed questionnaires including the widespread pain index (WPI), symptoms severity score (SSS), fibromyalgia impact questionnaire (FIQ), beck depression inventory (BDI), and visual analogue scale (VAS), to verify a diagnosis of FM according to ACR criteria. Subsequently, blood samples were drawn and PBMCs were collected for EM analysis. RESULTS: TEM analysis of PBMCs showed several distinct mitochondrial cristae patterns, including total loss of cristae in FM patients. The number of mitochondria with intact cristae morphology was reduced in FM patients and the percentage of mitochondria that completely lacked cristae was increased. These results correlated with the WPI severity. Moreover, in the FM patient samples we observed a high percentage of cells containing electron dense aggregates, which are possibly ribosome aggregates. Cristae loss and possible ribosome aggregation were intercorrelated, and thus may represent reactions to a shared cellular stress condition. The changes in mitochondrial morphology suggest that mitochondrial dysfunction, resulting in inefficient oxidative phosphorylation and ATP production, metabolic and redox disorders, and increased reactive oxygen species (ROS) levels, may play a pathogenetic role in FM. CONCLUSIONS: We describe novel morphological changes in mitochondria of FM patients, including loss of mitochondrial cristae. While these observations cannot determine whether the changes are pathogenetic or represent an epiphenomenon, they highlight the possibility that mitochondrial malfunction may play a causative role in the cascade of events leading to chronic pain and fatigue in FM. Moreover, the results offer the possibility of utilising changes in mitochondrial morphology as an objective biomarker in FM. Further understanding the connection between FM and dysfunction of mitochondria physiology, may assist in developing both novel diagnostic tools as well as specific treatments for FM, such as approaches to improve/strengthen mitochondria function.


Asunto(s)
Fibromialgia , Mitocondrias , Humanos , Fibromialgia/patología , Fibromialgia/fisiopatología , Proyectos Piloto , Mitocondrias/ultraestructura , Mitocondrias/patología , Femenino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Masculino , Microscopía Electrónica de Transmisión , Leucocitos Mononucleares/ultraestructura , Leucocitos Mononucleares/patología , Índice de Severidad de la Enfermedad , Dimensión del Dolor
3.
Blood ; 136(1): 81-92, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32299104

RESUMEN

Through a clustered regularly insterspaced short palindromic repeats (CRISPR) screen to identify mitochondrial genes necessary for the growth of acute myeloid leukemia (AML) cells, we identified the mitochondrial outer membrane protein mitochondrial carrier homolog 2 (MTCH2). In AML, knockdown of MTCH2 decreased growth, reduced engraftment potential of stem cells, and induced differentiation. Inhibiting MTCH2 in AML cells increased nuclear pyruvate and pyruvate dehydrogenase (PDH), which induced histone acetylation and subsequently promoted the differentiation of AML cells. Thus, we have defined a new mechanism by which mitochondria and metabolism regulate AML stem cells and gene expression.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas de Neoplasias/fisiología , Acetilación , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Sangre Fetal/citología , Regulación Leucémica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Fusión Oncogénica/fisiología , Procesamiento Proteico-Postraduccional , Ácido Pirúvico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
4.
Mol Cell ; 54(5): 870-8, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24813948

RESUMEN

Cells deficient in mitochondrial fusion have been shown to have defects linked to the exchange of inner membrane and matrix components. Because outer-mitochondrial membrane (OMM) constituents insert directly from the cytoplasm, a role for fusion in their intermitochondrial transfer was unanticipated. Here, we show that fibroblasts lacking the GTPases responsible for OMM fusion, mitofusins 1 and 2 (MFN1 and MFN2), display more heterogeneous distribution of OMM proteins. Proteins with different modes of OMM association display varying degrees of heterogeneity in Mfn1/2(-/-) cells and different kinetics of transfer during fusion in fusion-competent cells. Proapoptotic Bak exhibits marked heterogeneity, which is normalized upon expression of MFN2. Bak is critical for Bid-induced OMM permeabilization and cytochrome c release, and Mfn1/2(-/-) cells show dysregulation of Bid-dependent apoptotic signaling. Bid sensitivity of Bak-deficient mitochondria is regained upon fusion with Bak-containing mitochondria. Thus, OMM protein distribution depends on mitochondrial fusion and is a locus of apoptotic dysfunction in conditions of fusion deficiency.


Asunto(s)
Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Línea Celular , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Transporte de Proteínas , Ratas , Canal Aniónico 2 Dependiente del Voltaje/genética
5.
J Biol Chem ; 294(38): 13852-13863, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383739

RESUMEN

Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic (i.e. to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.


Asunto(s)
Diferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Mitocondrias/fisiología , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial/metabolismo , Epigénesis Genética/fisiología , Homeostasis , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Células Madre/metabolismo
6.
Biochim Biophys Acta ; 1857(8): 1243-1246, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26827940

RESUMEN

The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Madre/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Calcio/metabolismo , Señalización del Calcio , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Células Madre/citología , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética
7.
Hepatology ; 62(3): 816-28, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25951810

RESUMEN

UNLABELLED: Apoptosis is critical for maintaining tissue homeostasis, and apoptosis evasion is considered as a hallmark of cancer. However, increasing evidence also suggests that proapoptotic molecules can contribute to the development of cancer, including liver cancer. The aim of this study was to further clarify the role of the proapoptotic B-cell lymphoma 2 homology domain 3 (BH3)-only protein BH3 interacting-domain death agonist (BID) for chronic liver injury (CLI) and hepatocarcinogenesis (HCG). Loss of BID significantly delayed tumor development in two mouse models of Fah-mediated and HBsTg-driven HCG, suggesting a tumor-promoting effect of BID. Liver injury as well as basal and mitogen-stimulated hepatocyte proliferation were not modulated by BID. Moreover, there was no in vivo or in vitro evidence that BID was involved in DNA damage response in hepatocytes and hepatoma cells. Our data revealed that CLI was associated with strong activation of oxidative stress (OS) response and that BID impaired full activation of p38 after OS. CONCLUSION: We provide evidence that the tumor-promoting function of BID in CLI is not related to enhanced proliferation or an impaired DNA damage response. In contrast, BID suppresses p38 activity and facilitates malignant transformation of hepatocytes.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Hepatocitos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Análisis de Varianza , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Insuficiencia Hepática/patología , Insuficiencia Hepática/fisiopatología , Hepatocitos/citología , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Valores de Referencia
8.
J Biol Chem ; 288(30): 22111-27, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23744079

RESUMEN

Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/química , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Caspasa 8/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Cinética , Liposomas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/fisiología , Modelos Biológicos , Modelos Moleculares , Mutación , Permeabilidad , Unión Proteica , Conformación Proteica , Factores de Tiempo , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/genética
9.
J Biol Chem ; 287(18): 15016-23, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22416135

RESUMEN

The molecular basis of the interaction between mitochondrial carrier homologue 2 (MTCH2) and truncated BID (tBID) was characterized. These proteins participate in the apoptotic pathway, and the interaction between them may serve as a target for anticancer lead compounds. In response to apoptotic signals, MTCH2 recruits tBID to the mitochondria, where it activates apoptosis. A combination of peptide arrays screening with biochemical and biophysical techniques was used to characterize the mechanism of the interaction between tBID and MTCH2 at the structural and molecular levels. The regions that mediate the interaction between the proteins were identified. The two specific binding sites between the proteins were determined to be tBID residues 59-73 that bind MTCH2 residues 140-161, and tBID residues 111-125 that bind MTCH2 residues 240-290. Peptides derived from tBID residues 111-125 and 59-73 induced cell death in osteosarcoma cells. These peptides may serve as lead compounds for anticancer drugs that act by targeting the tBID-MTCH2 interaction.


Asunto(s)
Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Antineoplásicos/farmacología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/antagonistas & inhibidores , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Línea Celular Tumoral , Humanos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Péptidos/metabolismo , Péptidos/farmacología , Análisis por Matrices de Proteínas
10.
Exp Cell Res ; 318(11): 1316-23, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22326460

RESUMEN

Recent studies report mitochondrial carrier homolog 2 (MTCH2) as a novel and uncharacterized protein that acts as a receptor-like protein for the truncated BH3-interacting domain death agonist (tBID) protein in the outer membrane of mitochondria. These studies, using mouse embryonic stem cells and fibroblasts as well as mice with a conditional knockout of MTCH2 in the liver, showed that deletion of MTCH2 hindered recruitment of tBID to the mitochondria with subsequent reductions in the activation of pro-apoptotic proteins, mitochondrial outer membrane permeabilization and apoptosis. Sequence analysis shows that MTCH2 is present in all examined multicellular Metazoa as well as unicellular Choanoflagellata, and is a highly derived member of the mitochondrial carrier family. Mitochondrial carriers are monomeric transport proteins that are usually found in the inner mitochondrial membrane, where they exchange small substrates between the mitochondrial matrix and intermembrane space. There are extensive differences between the protein sequences of MTCH2 and other mitochondrial carriers that may explain the ability of MTCH2 to associate with tBID and thus its role in apoptosis. We review the experimental evidence for the role of MTCH2 in apoptosis and suggest that the original transport function of the ancestral MTCH2 mitochondrial carrier has been co-opted by the apoptotic machinery to provide a receptor and signaling mechanism.


Asunto(s)
Apoptosis , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Coanoflagelados , Evolución Molecular , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Transporte de Proteínas
11.
Trends Biochem Sci ; 33(11): 514-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18829329

RESUMEN

Cells frequently arrest or die in response to DNA damage to reduce the likelihood of progression to malignancy. A recent study sheds new light on the Aven protein, a known apoptotic regulator. After DNA damage, Aven induces cell-cycle arrest via ataxia-telangiectasia-mutated (ATM) kinase activation. These findings add Aven to a growing list of apopototic regulators that function as double agents in the DNA-damage response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Proteínas de la Membrana/metabolismo , Animales , Factor Apoptótico 1 Activador de Proteasas/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Fase G2/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis
12.
J Immunol ; 182(1): 515-21, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19109183

RESUMEN

The membrane attack complex (MAC) of the complement system induces a necrotic-type cell death. Earlier findings suggested that Bcl-2 protects cells from MAC-induced necrosis. Here we examined the involvement of Bid, a proapoptotic protein, in MAC-induced cytotoxicity. Bid knockout (Bid-/-) mouse embryonic fibroblasts (MEF) and primary fibroblasts were damaged by complement but to a significantly lower extent than wild-type (WT) fibroblasts. Bid silencing with small interfering RNA duplexes led to elevated resistance of mouse fibroblasts, human K562, and Jurkat cells to lysis by complement. Bid-/- MEF were also resistant to toxic doses of streptolysin O, melittin, and A23187. Analysis of complement protein deposition on fibroblasts demonstrated that less complement C3 and C9 bound to Bid-/- than to WT cells, even though expression of the membrane complement inhibitors Crry and CD59 was relatively reduced on Bid-/- cells. Bid was rapidly cleaved in WT MEF subjected to lytic doses of MAC. Pretreatment of the cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone reduced Bid cleavage and cell lysis. These results indicate that complement MAC activates two cell death pathways, one involving caspases and Bid and one that is Bid-independent.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Transducción de Señal/inmunología , Animales , Animales Recién Nacidos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/deficiencia , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasas/metabolismo , Muerte Celular/inmunología , Línea Celular Transformada , Células Cultivadas , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inmunidad Innata/genética , Células Jurkat , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Transducción de Señal/genética
13.
Hepatology ; 50(5): 1558-66, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19711425

RESUMEN

UNLABELLED: The BH3-interacting domain death agonist Bid has been shown to be critical for Fas-induced hepatocellular apoptosis. Furthermore, some studies have suggested that phosphorylation of Bid may determine its apoptotic function and may act as a switch to nonapoptotic functions. The aim of this study was to evaluate the role of Bid and phosphorylated Bid for Fas ligand (FasL)-induced apoptosis in murine livers. The monoclonal antibody Jo2 and a hexameric form of sFasL (MegaFasL) were used to induce apoptosis in wild-type, Bid-deficient (Bid(-/-)), Bid transgenic mice expressing a nonphosphorable form of Bid and Fas receptor-deficient lpr mice. Apoptosis sensitivity was determined in healthy mice and in mice following bile duct ligation, partial hepatectomy, or suramin pretreatment. As previously reported, loss of Bid protects mice against Jo2-induced liver failure. Remarkably however, Bid(-/-) mice are highly sensitive to MegaFasL-induced apoptosis. MegaFasL-treated Bid(-/-) mice showed a typical type I cell signaling behavior with activation of caspase-3 without Bax translocation to the mitochondria and no cytochrome C/Smac release into the cytosol. In contrast to previous in vitro findings, phosphorylation of Bid does not affect the sensitivity of hepatocytes to Fas receptor-mediated apoptosis in vivo. CONCLUSION: Our data suggest that Bid mainly amplifies a weak death receptor signal in quiescent and nonquiescent hepatocytes rendering the liver more sensitive to FasL-induced apoptosis. Thus, depending on the efficacy of Fas receptor activation, hepatocytes and nonparenchymal cells can either behave as type I or type II cells.


Asunto(s)
Proteína Ligando Fas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Transducción de Señal/fisiología , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis/fisiología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasas/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Hepatectomía/efectos adversos , Ligadura/efectos adversos , Fallo Hepático/etiología , Fallo Hepático/metabolismo , Fallo Hepático/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fosforilación/fisiología , Receptor fas/metabolismo
14.
Mediterr J Hematol Infect Dis ; 12(1): e2020072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194146

RESUMEN

Structural mitochondrial abnormalities and genetic aberrations in mitochondrial proteins have been known in Myelodysplastic syndrome (MDS), yet there is currently little data regarding MDS's metabolic properties and energy production cells. In the current study, we used state-of-the-art methods to assess OXPHOS in peripheral blood cells obtained from MDS patients and healthy controls. We then assessed the effect of food supplements-Coenzyme Q10 and carnitine on mitochondrial function and hematological response. We show here for the first time that there is a significant impairment of mitochondrial respiration in peripheral blood cells in low-risk MDS, which can be improved with food supplements. We also show that these supplements may improve the cytopenia and quality of life.

15.
Cell Stem Cell ; 24(4): 621-636.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30930145

RESUMEN

Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Mitocondrias/enzimología , Fosfolípidos/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia
16.
Mol Cell Biol ; 25(11): 4579-90, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15899861

RESUMEN

BID, a proapoptotic BCL-2 family member, plays an essential role in the tumor necrosis factor alpha (TNF-alpha)/Fas death receptor pathway in vivo. Activation of the TNF-R1 receptor results in the cleavage of BID into truncated BID (tBID), which translocates to the mitochondria and induces the activation of BAX or BAK. In TNF-alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex. Here we describe the biochemical purification of this complex and the identification of mitochondrial carrier homolog 2 (Mtch2) as part of this complex. Mtch2 is a conserved protein that is similar to members of the mitochondrial carrier protein family. Our studies with mouse liver mitochondria indicate that Mtch2 is an integral membrane protein exposed on the surface of mitochondria. Using blue-native gel electrophoresis we revealed that in viable FL5.12 cells Mtch2 resides in a protein complex of ca. 185 kDa and that the addition of TNF-alpha to these cells leads to the recruitment of tBID and BAX to this complex. Importantly, this recruitment was partially inhibited in FL5.12 cells stably expressing BCL-X(L). These results implicate Mtch2 as a mitochondrial target of tBID and raise the possibility that the Mtch2-resident complex participates in the mitochondrial apoptotic program.


Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Secuencia de Aminoácidos , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3 , Proteínas Portadoras/análisis , Secuencia Conservada , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Ratones , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Transducción de Señal , Proteína bcl-X
17.
Neuroscience ; 394: 156-163, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401654

RESUMEN

Mitochondrial Carrier Homolog 2 (MTCH2) acts as a receptor for the BH3 interacting-domain death agonist (BID) in the mitochondrial outer membrane. Loss of MTCH2 affects mitochondria energy metabolism and function. MTCH2 forebrain conditional KO (MTCH2 BKO) display a deficit in hippocampus-dependent cognitive functions. Here we study age-related MTCH2 BKO behavioral and electrophysiological aspects of hippocampal functions. MTCH2 BKO exhibit impaired spatial but not motor learning and an impairment in long-term potentiation (LTP) in hippocampal slices. Moreover, MTCH2 BKO express an increase in activated microglia, in addition to a reduction in neuron density in the hippocampus, but do not express amyloid-ß plaques or neurofibrillary tangles. These results highlight the role of mitochondria in the normal hippocampus-dependent memory formation.


Asunto(s)
Hipocampo/fisiopatología , Proteínas de Transporte de Membrana Mitocondrial/genética , Prosencéfalo/fisiopatología , Aprendizaje Espacial , Animales , Femenino , Hipocampo/patología , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Destreza Motora , Neuronas/patología , Prosencéfalo/patología , Prueba de Desempeño de Rotación con Aceleración Constante
18.
Nat Commun ; 9(1): 5132, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510213

RESUMEN

The role of mitochondria dynamics and its molecular regulators remains largely unknown during naïve-to-primed pluripotent cell interconversion. Here we report that mitochondrial MTCH2 is a regulator of mitochondrial fusion, essential for the naïve-to-primed interconversion of murine embryonic stem cells (ESCs). During this interconversion, wild-type ESCs elongate their mitochondria and slightly alter their glutamine utilization. In contrast, MTCH2-/- ESCs fail to elongate their mitochondria and to alter their metabolism, maintaining high levels of histone acetylation and expression of naïve pluripotency markers. Importantly, enforced mitochondria elongation by the pro-fusion protein Mitofusin (MFN) 2 or by a dominant negative form of the pro-fission protein dynamin-related protein (DRP) 1 is sufficient to drive the exit from naïve pluripotency of both MTCH2-/- and wild-type ESCs. Taken together, our data indicate that mitochondria elongation, governed by MTCH2, plays a critical role and constitutes an early driving force in the naïve-to-primed pluripotency interconversion of murine ESCs.


Asunto(s)
Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/citología
19.
Endocrinology ; 148(4): 1717-26, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17218406

RESUMEN

Atresia and luteolysis are well-documented processes in which most of the growing ovarian follicles and all corpora lutea, respectively, are eliminated by apoptosis. We have previously reported that LH and FSH enhance caspase-3 and -7 activity and apoptosis in the theca-interstitial cells of rat preovulatory follicles in culture. Here we have used cultured follicles to examine whether LH-induced caspase activation is related to the ability of LH to stimulate steroid production. In these studies, we used three inhibitors of enzymes involved in steroid production: aminoglutethimide and ketoconazole, acting on cytochrome P450 side-chain cleavage (P450scc) located at the mitochondria, and epostane, acting on 3beta-hydroxysteroid dehydrogenase located at the endoplasmic reticulum. We found that treatment with either aminoglutethimide or ketoconazole, but not with epostane, significantly reduced LH-induced caspase-3 and -7 activation and apoptosis, suggesting the mediation of LH-induced caspase activation by P450scc. Supplementing pregnenolone, the product of P450scc catalysis, to follicles treated with aminoglutethimide did not restore LH-induced caspase activation. On the other hand, treatment with antioxidants inhibited LH-induced caspase activation. Moreover, LH treatment was associated with an increase in reactive oxygen species which was inhibited by aminoglutethimide. Thus, P450scc catalysis results in an increase in reactive oxygen species, which in turn may trigger/facilitate caspase-3 activation. Finally, we found that in rat corpora lutea in vivo, an increase in steroidogenesis was accompanied by an increase in caspase activity. Thus, this study reveals a linkage between two seemingly distinct processes in which LH-induced caspase activation in cultured rat preovulatory follicles is coupled to mitochondrial steroidogenesis via P450scc.


Asunto(s)
Caspasas/metabolismo , Hormona Luteinizante/farmacología , Mitocondrias/metabolismo , Folículo Ovárico/efectos de los fármacos , Esteroides/biosíntesis , Aminoglutetimida/farmacología , Animales , Apoptosis/efectos de los fármacos , Inhibidores de la Aromatasa/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/antagonistas & inhibidores , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Fase Folicular/efectos de los fármacos , Cetoconazol/farmacología , Modelos Biológicos , Folículo Ovárico/enzimología , Ratas , Ratas Wistar
20.
BMC Cell Biol ; 8: 7, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17326836

RESUMEN

BACKGROUND: Bcl-2 homology domain (BH) 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid), which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid) from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 microM). RESULTS: Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1-58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. CONCLUSION: Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.


Asunto(s)
Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Hipocampo/citología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/química , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasa 8/metabolismo , Células Cultivadas , Hipocampo/efectos de los fármacos , Proteínas Mutantes/metabolismo , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Ratas , Ratas Endogámicas F344 , Receptores de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA