Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2316299121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381786

RESUMEN

The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets. The adsorption of ligands results in incompatible curvatures on the top and bottom surfaces of the NPL, causing them to deform into helicoïds, helical ribbons, or tubes depending on the lateral dimensions and crystallographic orientation of the NPL. We demonstrate that nanoplatelets belong to the broad class of geometrically frustrated assemblies and exhibit one of their hallmark features: a transition between helicoïds and helical ribbons at a critical width. The effective curvature [Formula: see text] is the single aggregate parameter that encodes the details of the ligand/surface interaction, determining the nanoplatelets' geometry for a given width and crystallographic orientation. The conceptual framework described here will aid the rational design of dynamic, chiral nanostructures with high fundamental and practical relevance.

2.
Phys Rev Lett ; 129(4): 048102, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35938996

RESUMEN

We present a covariant continuum formulation of a generalized two-dimensional vertexlike model of epithelial tissues which describes tissues with different underlying geometries, and allows for an analytical macroscopic description. Using a geometrical approach and out-of-equilibrium statistical mechanics, we calculate both mechanical and dynamical instabilities of a tissue, and their dependences on various variables, including activity, and cell-shape heterogeneity (disorder). We show how both plastic cellular rearrangements and the tissue elastic response depend on the existence of mechanical residual stresses at the cellular level. Even freely growing tissues may exhibit a growth instability depending on the intrinsic proliferation rate. Our main result is an explicit calculation of the cell pressure in a homeostatic state of a confined growing tissue. We show that the homeostatic pressure can be negative and depends on the existence of mechanical residual stresses. This geometric model allows us to sort out elastic and plastic effects in a growing, flowing, tissue.


Asunto(s)
Modelos Biológicos , Plásticos , Epitelio , Homeostasis , Estrés Mecánico
3.
Phys Rev Lett ; 116(25): 258105, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391758

RESUMEN

We derive a reduced quasi-one-dimensional theory of geometrically frustrated elastic ribbons. Expressed in terms of geometric properties alone, it applies to ribbons over a wide range of scales, allowing the study of their elastic equilibrium, as well as thermal fluctuations. We use the theory to account for the twisted-to-helical transition of ribbons with spontaneous negative curvature and the effect of fluctuations on the corresponding critical exponents. The persistence length of such ribbons changes nonmonotonically with the ribbon's width, dropping to zero at the transition. This and other statistical properties qualitatively differ from those of nonfrustrated fluctuating filaments.

4.
Phys Rev E ; 109(5-1): 054111, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907449

RESUMEN

Using a statistical-mechanics approach, we study the effects of geometry and self-avoidance on the ordering of slender filaments inside nonisotropic containers, considering cortical microtubules in plant cells, and packing of genetic material inside viral capsids as concrete examples. Within a mean-field approximation, we show analytically how the shape of the container, together with self-avoidance, affects the ordering of the stiff rods. We find that the strength of the self-avoiding interaction plays a significant role in the preferred packing orientation, leading to a first-order transition for oblate cells, where the preferred orientation changes from azimuthal, along the equator, to a polar one, when self-avoidance is strong enough. While for prolate spheroids the ground state is always a polar-like order, strong self-avoidance results with a deep metastable state along the equator. We compute the critical surface describing the transition between azimuthal and polar ordering in the three-dimensional parameter space (persistence length, eccentricity, and self-avoidance) and show that the critical behavior of this system is in fact related to the butterfly catastrophe model. We calculate the pressure and shear stress applied by the filament on the surface, and the injection force needed to be applied on the filament in order to insert it into the volume. We compare these results to the pure mechanical study where self-avoidance is ignored, and discuss similarities and differences.

5.
Phys Rev E ; 103(1-1): 013001, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601586

RESUMEN

We suggest a geometrical mechanism for the ordering of slender filaments inside nonisotropic containers, using cortical microtubules in plant cells and the packing of viral genetic material inside capsids as concrete examples. We show analytically how the shape of the cell affects the ordering of phantom elastic rods that are not self-avoiding (i.e., self-crossing is allowed). We find that for oblate cells, the preferred orientation is along the equator, while for prolate spheroids with an aspect ratio close to 1, the orientation is along the principal (long axis). Surprisingly, at a high enough aspect ratio, a configurational phase transition occurs and the rods no longer point along the principal axis, but at an angle to it, due to high curvature at the poles. We discuss some of the possible effects of self-avoidance using energy considerations. These results are relevant to other packing problems as well, such as the spooling of filament in the industry or spider silk inside water droplets.

6.
Nat Commun ; 10(1): 4245, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519903

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Commun ; 10(1): 3565, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395874

RESUMEN

Self-assembly is an important process by which nontrivial structures are formed on the sub-micron scales. Such processes are governed by chemical and physical principles that dictate how the molecular interactions affect the supramolecular geometry. Currently there is no general framework that links between molecular properties and the supramolecular morphology with its size parameters. Here we introduce a new paradigm for the description and analysis of supramolecular structures that self-assemble via short-range interactions. Analysis of molecular interactions determines inputs to the theory of incompatible elasticity, which provides analytic expressions for supramolecular shape and fluctuations. We derive quantitative predictions for specific amphiphiles that self-assembled into chiral nanoribbons. These are quantitatively confirmed experimentally, revealing unique shape evolution, unusual mechanics and statistics, proving that the assemblies are geometrically incompatible. The success in predicting equilibrium and statistics suggests the approach as a new framework for quantitative study of a large variety of self-assembled nanostructures.

8.
Phys Rev E ; 98(2-1): 022502, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253468

RESUMEN

We study the shape and shape fluctuations of incompatible, positively curved ribbons, with a flat reference metric and a spherelike reference curvature. Such incompatible geometry is likely to occur in many self-assembled materials and other experimental systems. Ribbons of this geometry exhibit a sharp transition between a rigid ring and an anomalously soft spring as a function of their width. As a result, the temperature dependence of these ribbons' shape is unique, exhibiting a nonmonotonic dependence of the persistence and Kuhn lengths on the temperature and width. We map the possible configuration phase space and show the existence of three phases: At high temperatures it is the ideal chain phase, where the ribbon is well described by classical models (e.g., wormlike chain model). The second phase, for cold and narrow ribbons, is the plane ergodic phase; a ribbon in this phase might be thought of as made out of segments that gyrate within an oblate spheroid with extreme aspect ratio. The third phase, for cold, wide ribbons, is a direct result of the residual stress caused by the incompatibility, called the random structured phase. A ribbon in this phase behaves on large scales as an ideal chain. However, the segments of this chain are not straight; rather they may have different shapes, mainly helices (both left and right handed) of various pitches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA