Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(1): e22059, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847273

RESUMEN

The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcripción Genética , Quinasa de la Caseína I/genética , Células HEK293 , Humanos , Fosforilación , Dominios Proteicos , Receptores de Mineralocorticoides/genética
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293446

RESUMEN

The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.


Asunto(s)
Aldosterona , Receptores de Mineralocorticoides , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Ligandos , ADN , Factores de Transcripción , Agua , Glucosa
3.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563079

RESUMEN

Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.


Asunto(s)
Isquemia , Miocitos Cardíacos , Proteína Fosfatasa 2 , Sepsis , Animales , Pruebas de Función Cardíaca , Isquemia/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Sepsis/metabolismo
4.
Cell Mol Life Sci ; 77(5): 903-918, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31312877

RESUMEN

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among others cardiac hypertrophy and atrial fibrillation. The aim of our study was to evaluate the impact of miR-221/222 on cardiac electrical remodeling. Cardiac miR expression was analyzed in a mouse model with altered electrocardiography parameters and severe heart hypertrophy. Next generation sequencing revealed 14 differentially expressed miRs in hypertrophic hearts, with miR-221 and -222 being the strongest regulated miR-cluster. This increase was restricted to cardiomyocytes and not observed in cardiac fibroblasts. Additionally, we evaluated the change of miR-221/222 in vivo in two models of pharmacologically induced heart hypertrophy (angiotensin II, isoprenaline), thereby demonstrating a stimulus-induced increase in miR-221/222 in vivo by angiotensin II but not by isoprenaline. Whole transcriptome analysis by RNA-seq and qRT-PCR validation revealed an enriched number of downregulated mRNAs coding for proteins located in the T-tubule, which are also predicted targets for miR-221/222. Among those, mRNAs were the L-type Ca2+ channel subunits as well as potassium channel subunits. We confirmed that both miRs target the 3'-untranslated regions of Cacna1c and Kcnj5. Furthermore, enhanced expression of these miRs reduced L-type Ca2+ channel and Kcnj5 channel abundance and function, which was analyzed by whole-cell patch clamp recordings or Western blot and flux measurements, respectively. miR-221 and -222 contribute to the regulation of L-type Ca2+ channels as well as Kcnj5 channels and, therefore, potentially contribute to disturbed cardiac excitation generation and propagation. Future studies will have to evaluate the pathophysiological and clinical relevance of aberrant miR-221/222 expression for electrical remodeling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , MicroARNs/genética , Canales de Potasio/metabolismo , Animales , Canales de Calcio Tipo L/genética , Cardiomegalia/genética , Cardiomegalia/patología , Línea Celular , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Canales de Potasio/genética
5.
FASEB J ; 30(4): 1610-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26728178

RESUMEN

Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.


Asunto(s)
MicroARNs/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Receptores de Mineralocorticoides/genética , Aldosterona/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Apoptosis/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Colágeno/metabolismo , Fibronectinas/metabolismo , Humanos , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Mineralocorticoides/agonistas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
6.
FASEB J ; 28(9): 4015-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24868010

RESUMEN

Kidney epithelial sodium channels (ENaCs) are known to be inactivated by high sodium concentrations (feedback inhibition). Recently, the endothelial sodium channel (EnNaC) was identified to control the nanomechanical properties of the endothelium. EnNaC-dependent endothelial stiffening reduces the release of nitric oxide, the hallmark of endothelial dysfunction. To study the regulatory impact of sodium on EnNaC, endothelial cells (EA.hy926 and ex vivo mouse endothelium) were incubated in aldosterone-free solutions containing either low (130 mM) or high (150 mM) sodium concentrations. By applying atomic force microscopy-based nanoindentation, an unexpected positive correlation between increasing sodium concentrations and cortical endothelial stiffness was observed, which can be attributed to functional EnNaC. In particular, an acute rise in sodium concentration (+20 mM) was sufficient to increase EnNaC membrane abundance by 90% and stiffening of the endothelial cortex by 18%. Despite the absence of exogenous aldosterone, these effects were prevented by the aldosterone synthase inhibitor FAD286 (100 nM) or the mineralocorticoid receptor (MR)-antagonist spironolactone (100 nM), indicating endogenous aldosterone synthesis and MR-dependent signaling. Interestingly, in the presence of high-sodium concentrations, FAD286 increased the transcription of the MR by 69%. Taken together, a novel feedforward activation of EnNaC by sodium is proposed that contrasts ENaC feedback inhibition in kidney.


Asunto(s)
Aorta/metabolismo , Endotelio Vascular/metabolismo , Canales Epiteliales de Sodio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Sodio/farmacología , Animales , Aorta/citología , Aorta/efectos de los fármacos , Western Blotting , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Citocromo P-450 CYP11B2/antagonistas & inhibidores , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Ratones , Microscopía de Fuerza Atómica , Microscopía Fluorescente , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Clin Exp Pharmacol Physiol ; 42(8): 874-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25933122

RESUMEN

In critically ill patients regulation of heart-rate is often severely disturbed. Interaction of bacterial endotoxin (lipopolysaccharide, LPS) with hyperpolarization-activated cyclic nucleotide-gated cation-(HCN)-channels may interfere with heart-rate regulation. This study analyzes the effect of LPS, the HCN-channel blocker ivabradine or Ca(2+) -channel blockers (nifedipine, verapamil) on pacemaking in spontaneously beating neonatal rat cardiomyocytes (CM) in vitro. In vivo, the effect of LPS on the heart-rate of adult CD1-mice with and without autonomic blockade is analyzed telemetrically. LPS (100 ng/mL) and ivabradine (5 µg/mL) reduced the beating-rate of CM by 20.1% and 24.6%, respectively. Coincubation of CM with both, LPS and ivabradine, did not further reduce the beating-rate, indicating interaction of both compounds with HCN-channels, while coincubation with Ca(2+) -channel blockers and LPS caused additive beating-rate reduction. In CD1-mice (containing an active autonomic-nervous-system), injection of LPS (0.4 mg/kg) expectedly resulted in increased heart-rate. However, if the autonomic nervous system was blocked by propranolol and atropine, in line with the in vitro data, LPS induced a significant reduction of heart-rate, which was not additive to ivabradine. The in vivo and in vitro results indicate that LPS interacts with HCN-channels of cardiomyocytes. Thus, LPS indirectly sensitizes HCN-channels for sympathetic activation (tachycardic-effect), and in parallel directly inhibits channel activity (bradycardic-effect). Both effects may contribute to the detrimental effects of septic cardiomyopathy and septic autonomic dysfunction.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Animales , Benzazepinas/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Ivabradina , Masculino , Ratones , Ratas , Sistema Nervioso Simpático/fisiopatología , Taquicardia/inducido químicamente , Taquicardia/metabolismo , Taquicardia/fisiopatología
8.
Nucleic Acids Res ; 41(17): 8045-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821666

RESUMEN

The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1-MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes.


Asunto(s)
Receptores ErbB/genética , Receptores de Mineralocorticoides/metabolismo , Elementos de Respuesta , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Aldosterona/farmacología , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Ratas , Receptores de Mineralocorticoides/química , Transducción de Señal , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp3/metabolismo , Regulación hacia Arriba
9.
J Physiol ; 592(6): 1199-211, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24366264

RESUMEN

Depressed heart rate variability in severe inflammatory diseases can be partially explained by the lipopolysaccharide (LPS)-dependent modulation of cardiac pacemaker channels. Recently, we showed that LPS inhibits pacemaker current in sinoatrial node cells and in HEK293 cells expressing cloned pacemaker channels, respectively. The present study was designed to verify whether this inhibition involves LPS-dependent intracellular signalling and to identify structures of LPS responsible for pacemaker current modulation. We examined the effect of LPS on the activity of human hyperpolarization-activated cyclic nucleotide-gated channel 2 (hHCN2) stably expressed in HEK293 cells. In whole-cell recordings, bath application of LPS decreased pacemaker current (IhHCN2) amplitude. The same protocol had no effect on channel activity in cell-attached patch recordings, in which channels are protected from the LPS-containing bath solution. This demonstrates that LPS must interact directly with or close to the channel protein. After cleavage of LPS into lipid A and the polysaccharide chain, neither of them alone impaired IhHCN2, which suggests that modulation of channel activity critically depends on the integrity of the entire LPS molecule. We furthermore showed that ß-cyclodextrin interfered with LPS-dependent channel modulation predominantly via scavenging of lipid A, thereby abrogating the capability of LPS to intercalate into target cell membranes. We conclude that LPS impairs IhHCN2 by a local mechanism that is restricted to the vicinity of the channels. Furthermore, intercalation of lipid A into target cell membranes is a prerequisite for the inhibition that is suggested to depend on the direct interaction of the LPS polysaccharide chain with cardiac pacemaker channels.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Lipopolisacáridos/metabolismo , Microdominios de Membrana/metabolismo , Colesterol/metabolismo , Fenómenos Electrofisiológicos , Glicosilación , Células HEK293 , Frecuencia Cardíaca/fisiología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/metabolismo , Lipopolisacáridos/química , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Insuficiencia Multiorgánica/fisiopatología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistemas de Mensajero Secundario , Sepsis/fisiopatología , beta-Ciclodextrinas/farmacología
10.
Curr Opin Nephrol Hypertens ; 23(2): 113-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24401788

RESUMEN

PURPOSE OF THE REVIEW: The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase with a wide implication in tumor biology, wound healing and development. Besides acting as a growth factor receptor activated by ligands such as EGF, the EGFR can also be transactivated and thereby mediate cross-talk with different signaling pathways. The aim of this review is to illustrate the Janus-faced function of the EGFR in the vasculature with its relevance for vascular biology and disease. RECENT FINDINGS: Over recent years, the number of identified signaling partners of the EGFR has steadily increased, as have the biological processes in which the EGFR is thought to be involved. Recently, new models have allowed investigation of EGFR effects in vivo, shedding some light on the overall function of the EGFR in the vasculature. At the same time, EGFR inhibitors and antibodies have become increasingly established in cancer therapy, providing potential therapeutic tools for decreasing EGFR signaling. SUMMARY: The EGFR is a versatile signaling pathway integrator associated with vascular homeostasis and disease. In addition to modulating basal vascular tone and tissue homeostasis, the EGFR also seems to be involved in proinflammatory, proliferative, migratory and remodeling processes, with enhanced deposition of extracellular matrix components, thereby promoting vascular diseases such as hypertension or atherosclerosis.


Asunto(s)
Vasos Sanguíneos/enzimología , Receptores ErbB/metabolismo , Transducción de Señal , Animales , Anticuerpos/uso terapéutico , Antineoplásicos/uso terapéutico , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Células Endoteliales/enzimología , Receptores ErbB/antagonistas & inhibidores , Humanos , Ligandos , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Cross-Talk , Transducción de Señal/efectos de los fármacos , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/enzimología
11.
FASEB J ; 27(9): 3652-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23729588

RESUMEN

Aldosterone triggers the stiff endothelial cell syndrome (SECS), characterized by an up-regulation of epithelial sodium channels (ENaCs) and mechanical stiffening of the endothelial cell cortex accompanied by endothelial dysfunction. In vivo, aldosterone antagonism exerts sustained protection on the cardiovascular system. To illuminate the molecular mechanisms of this time-dependent effect, a study on endothelial cells in vitro and ex vivo was designed to investigate SECS over time. Endothelia (from human umbilical veins, bovine aortae, and explants of human arteries) were cultured in aldosterone-supplemented medium with or without the mineralocorticoid receptor (MR) antagonist spironolactone. MR expression, ENaC expression, cortical stiffness, and shear-mediated nitric oxide (NO) release were determined after 3 d (short term) and up to 24 d (long term). Over time, MR expression increased by 129%. ENaC expression and surface abundance increased by 32% and 42% (13.8 to 19.6 molecules per cell surface), paralleled by a 49% rise in stiffness. Spironolactone prevented this development and, after 3 wk of treatment, increased NO release by 50%. Thus, spironolactone improves endothelial function long-lastingly by preventing a time-dependent manifestation of SECS. This emphasizes the key role of vascular endothelium as a therapeutical target in cardiovascular disorders and might explain blood pressure independent actions of MR antagonism.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Espironolactona/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Bovinos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Microscopía de Fuerza Atómica , Óxido Nítrico/metabolismo , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/metabolismo
12.
FASEB J ; 26(6): 2327-37, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22345406

RESUMEN

Recently it was shown that the mineralocorticoid receptor (MR) may exert part of its transcriptional activity by mediation of calcineurin (PP2B). Here we investigated the mechanism of interaction of MR with calcineurin and provide a new MR signaling pathway with potential physiological and pathophysiological relevance. MR → calcineurin crosstalk was assessed in a heterologous expression system (human embryonic kidney cells), which provides the opportunity for detailed mechanistic investigation. SiRNA knockdown experiments show that activated MR, but not GR, reduces CREB- and enhances NFaT-mediated transcriptional activation via the catalytic calcineurin subunit PP2BAß but not via PP2BAα. Altered PP2BAß expression, elevated cytosolic Ca(2+), activation of mitogen-activated kinase [p38, extracellular signal-regulated kinase (ERK) 1/2], or protein kinase C do not seem to be involved, whereas inhibition of the chaperone heat-shock protein 90 (HSP90) abrogated the effect of MR. Coimmunoprecipitation indicates the existence of protein complexes harboring MR and PP2BAß independent of MR activation but dependent on HSP90. Activated MR alters the subcellular distribution of PP2BAß, enhancing its nuclear fraction, and reduces mRNA expression of the endogenous inhibitor CAIN (calcineurin inhibitor) but not of RCAN1 (regulator of calcineurin). Overall, transcriptional relevant MR → calcineurin crosstalk occurs via the catalytic subunit PP2BAß, enables glucocorticoid response element-independent genomic signaling of MR, and is of potential pathophysiological relevance. Mechanistically, the crosstalk results from HSP90-mediated cytosolic protein complex formation, altered subcellular distribution, and altered endogenous inhibitor expression.


Asunto(s)
Calcineurina/metabolismo , Receptores de Mineralocorticoides/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Factores de Transcripción NFATC/metabolismo , ARN Interferente Pequeño/farmacología , Receptores de Mineralocorticoides/efectos de los fármacos
13.
Cells ; 12(18)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759492

RESUMEN

Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.


Asunto(s)
Calcineurina , Músculo Liso Vascular , Animales , Factores de Transcripción , Diferenciación Celular , Aorta
14.
J Vasc Res ; 49(3): 231-41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22433677

RESUMEN

BACKGROUND/AIMS: It is currently under debate whether aldosterone is able to induce fibrosis or whether it acts only as a cofactor under pathological conditions, e.g. as an elevated salt (NaCl) load. METHODS: We tested the interaction of 10 nM aldosterone, 15 mM NaCl and 1 µM ouabain using rat aorta smooth muscle cells (A10) with respect to the following parameters: necrosis, apoptosis, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase activity, glutathione (GSH) content, collagen and fibronectin homeostasis and intracellular calcium distribution. RESULTS: Necrosis rates were increased after 48 h of incubation with aldosterone, salt or ouabain and in the combination of aldosterone and salt or ouabain. Apoptosis rates were decreased. A reduced defense capacity against oxidative stress was mirrored in the decreased G6PD activity and GSH content. Collagen III or fibronectin synthesis rates were unchanged, but gelatinase activity was increased resulting in a decreased media collagen III and fibronectin content. Calcium stores were increased by aldosterone in combination with ouabain. CONCLUSION: Aldosterone and salt per se can lead to cell injury that is aggravated in combination or with cardiotonic steroids. In cooperation with other vascular cells, this can generate a permissive milieu enabling aldosterone or salt to promote more extensive vascular injury.


Asunto(s)
Aldosterona/farmacología , Aorta/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ouabaína/farmacología , Cloruro de Sodio/farmacología , Animales , Aorta/citología , Aorta/metabolismo , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo III/metabolismo , Fibronectinas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glutatión/análisis , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas
15.
Arterioscler Thromb Vasc Biol ; 31(7): 1643-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21512163

RESUMEN

OBJECTIVE: Pathophysiological effects of the epidermal growth factor receptor (EGFR or ErbB1) include vascular remodeling. EGFR transactivation is proposed to contribute significantly to heterologous signaling and remodeling in vascular smooth muscle cells (VSMC). METHODS AND RESULTS: We investigated the importance of EGFR in primary VSMC from aorta of mice with targeted deletion of the EGFR (EGFR(Δ/Δ VSMC)→VSMC(EGFR-/-) and EGFR(Δ/+ VSMC)→VSMC(EGFR+/-)) and the respective littermate controls (EGFR(+/+ VSMC)→VSMC(EGFR+/+)) with respect to survival, pentose phosphate pathway activity, matrix homeostasis, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and Ca(2+) homeostasis. In VSMC(EGFR-/-), epidermal growth factor-induced signaling was abolished; VSMC(EGFR+/-) showed an intermediate phenotype. EGFR deletion enhanced spontaneous cell death, reduced pentose phosphate pathway activity, disturbed cellular matrix homeostasis (collagen III and fibronectin), and abolished epidermal growth factor sensitivity. In VSMC(EGFR-/-) endothelin-1- or α(1)-adrenoceptor-induced ERK1/2 phosphorylation and the fraction of Ca(2+) responders were significantly reduced, whereas responsive cells showed a significantly stronger Ca(2+) signal. Oxidative stress (H(2)O(2)) induced ERK1/2 activation in VSMC(EGFR+/+) and VSMC(EGFR+/-) but not in VSMC(EGFR-/-). The Ca(2+) signal was enhanced in VSMC(EGFR-/-), similar to purinergic stimulation by ATP. CONCLUSIONS: In conclusion, EGFR was found to be important for basal VSMC homeostasis and ERK1/2 activation by the tested G-protein-coupled receptors or radical stress. Ca(2+) signaling was modulated by EGFR differentially with respect to the fraction of responders and magnitude of the signal. Thus, EGFR seems to be Janus-faced for VSMC biology.


Asunto(s)
Receptores ErbB/deficiencia , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Señalización del Calcio , Supervivencia Celular , Células Cultivadas , Endotelina-1/metabolismo , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Matriz Extracelular/metabolismo , Genotipo , Homeostasis , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Oxidantes/farmacología , Estrés Oxidativo , Vía de Pentosa Fosfato , Fenotipo , Fenilefrina/farmacología , Fosforilación , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Tiempo
16.
Br J Pharmacol ; 179(13): 3103-3118, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34811739

RESUMEN

During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity. LINKED ARTICLES: This article is part of a themed issue on Emerging Fields for Therapeutic Targeting of the Aldosterone-Mineralocorticoid Receptor Signaling Pathway. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.13/issuetoc.


Asunto(s)
Receptores de Mineralocorticoides , Transducción de Señal , Aldosterona , Receptores de Glucocorticoides , Receptores de Mineralocorticoides/metabolismo
17.
J Mol Cell Cardiol ; 51(2): 226-35, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21609720

RESUMEN

Recently it was shown that lipopolysaccharide (LPS) impairs the pacemaker current in human atrial myocytes. It was speculated that reduced heart rate variability (HRV), typical of patients with severe sepsis, may partially be explained by this impairment. We evaluated the effect of various types of LPS on the activity of human hyperpolarization-activated cyclic nucleotide-gated channel 2 (hHCN2) expressed in HEK293 cells, and on pacemaker channels in native murine sino-atrial node (SAN) cells, in order to determine the structure of LPS necessary to modulate pacemaker channel function. Application of LPS caused a robust inhibition of hHCN2-mediated current (I(hHCN2)) owing to a negative shift of the voltage dependence of current activation and to a reduced maximal conductance. In addition, kinetics of channel gating were modulated by LPS. Pro-inflammatory LPS-types lacking the O-chain did not reduce I(hHCN2), whereas pro-inflammatory LPS-types containing the O-chain reduced I(hHCN2). On the other hand, a detoxified LPS without inflammatory activity, but containing the O-chain reduced I(hHCN2). Similar observations were made in HEK293 cells expressing hHCN4 and in murine SAN cells. This mechanistic analysis showed the novel finding that the O-chain of LPS is required for reduction of HCN channel activity. In the clinical situation the observed modulation of HCN channels may slow down diastolic depolarization of pacemaker cells and, hence, influence heart rate variability and heart rate.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Lipopolisacáridos/farmacología , Moduladores del Transporte de Membrana/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Lipopolisacáridos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/metabolismo , Factores de Tiempo
18.
Biochim Biophys Acta ; 1803(5): 584-90, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20211660

RESUMEN

The mineralocorticoid receptor (MR), a ligand-activated transcription factor expressed in various cell types (e.g. epithelial cells, neurons, smooth muscle cells, immune cells), plays important roles in neurohumoral, neuronal, cardiovascular, renal and intestinal function. Pathophysiological relevant signaling mechanisms include nongenomic pathways involving the EGF receptor (EGFR). We investigated whether a MR-EGFR colocalization may underlie the functional MR-EGFR interaction by coimmunoprecipitation, fluorescence resonance energy transfer (FRET) and confocal microscopy in a heterologous expression system. EGFR and a small fraction of MR colocalize at the cell membrane, independently of short time exposure (

Asunto(s)
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Riñón/metabolismo , Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Western Blotting , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Riñón/citología , Unión Proteica
19.
FASEB J ; 24(6): 2010-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20103717

RESUMEN

We investigated the interaction of MR with cAMP-response element binding protein (CREB) and provide a mechanistic explanation and insights into the cellular relevance. MR --> CREB crosstalk was assessed in vascular smooth muscle cells and heterologous expression systems. Experiments were designed in a way that only one variable changed at a time and the respective vehicles served as controls. MR, but not GR, activation (aldosterone or hydrocortisone, IC(50), approximately 0.3 nM) inhibits CREB transcriptional activity induced by stimulation of beta1/2-adrenoceptors and adenylyl cyclase or addition of membrane-permeable cAMP up to 70% within 2 h after addition. The MR DNA-binding domain is not required for this inhibition. cAMP formation is virtually unchanged, whereas MR exerts a robust inhibition of CREB(S133) phosphorylation via calcineurin/PP2B activation without changes in PP2B-Aalpha or beta expression. In parallel, the PP2B-sensitive NFaT-pathway is activated. The inhibitory crosstalk attenuates CREB-induced glucose-6-phosphate dehydrogenase expression. Overall, transcriptional relevant MR --> CREB crosstalk occurs at the level of CREB phosphorylation by enhanced calcineurin activity, enables GRE-independent genomic signaling of MR, and is of potential pathophysiological relevance.


Asunto(s)
Aorta/metabolismo , Calcineurina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Mineralocorticoides/metabolismo , Aorta/citología , Western Blotting , Calcineurina/genética , Células Cultivadas , AMP Cíclico/metabolismo , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Ensayo de Inmunoadsorción Enzimática , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores de Mineralocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
20.
Front Mol Biosci ; 8: 667990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124152

RESUMEN

During aging, the cardiovascular system is especially prone to a decline in function and to life-expectancy limiting diseases. Cardiovascular aging is associated with increased arterial stiffness and vasoconstriction as well as left ventricular hypertrophy and reduced diastolic function. Pathological changes include endothelial dysfunction, atherosclerosis, fibrosis, hypertrophy, inflammation, and changes in micromilieu with increased production of reactive oxygen and nitrogen species. The renin-angiotensin-aldosterone-system is an important mediator of electrolyte and blood pressure homeostasis and a key contributor to pathological remodeling processes of the cardiovascular system. Its effects are partially conveyed by the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, whose activity increases during aging and cardiovascular diseases without correlating changes of its ligand aldosterone. There is growing evidence that the MR can be enzymatically and non-enzymatically modified and that these modifications contribute to ligand-independent modulation of MR activity. Modifications reported so far include phosphorylation, acetylation, ubiquitination, sumoylation and changes induced by nitrosative and oxidative stress. This review focuses on the different posttranslational modifications of the MR, their impact on MR function and degradation and the possible implications for cardiovascular aging and diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA