Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072048

RESUMEN

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mecanotransducción Celular , Miofibroblastos , Proteína de Unión al Calcio S100A4 , Animales , Ratones , Transdiferenciación Celular , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
2.
J Immunol ; 204(5): 1310-1321, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969384

RESUMEN

Mechanical cell-matrix interactions can drive the innate immune responses to infection; however, the molecular underpinnings of these responses remain elusive. This study was undertaken to understand the molecular mechanism by which the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), alters the in vivo response to lung infection. For the first time, to our knowledge, we show that TRPV4 protects the lung from injury upon intratracheal Pseudomonas aeruginosa in mice. TRPV4 functions to enhance macrophage bacterial clearance and downregulate proinflammatory cytokine secretion. TRPV4 mediates these effects through a novel mechanism of molecular switching of LPS signaling from predominant activation of the MAPK, JNK, to that of p38. This is accomplished through the activation of the master regulator of inflammation, dual-specificity phosphatase 1. Further, TRPV4's modulation of the LPS signal is mechanosensitive in that both upstream activation of p38 and its downstream biological consequences depend on pathophysiological range extracellular matrix stiffness. We further show the importance of TRPV4 on LPS-induced activation of macrophages from healthy human controls. These data are the first, to our knowledge, to demonstrate new roles for macrophage TRPV4 in regulating innate immunity in a mechanosensitive manner through the modulation of dual-specificity phosphatase 1 expression to mediate MAPK activation switching.


Asunto(s)
Pulmón , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos , Macrófagos/inmunología , Neumonía Bacteriana , Infecciones por Pseudomonas , Pseudomonas aeruginosa/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Femenino , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/microbiología , Lipopolisacáridos/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/patología , Ratones , Ratones Mutantes , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/inmunología , Neumonía Bacteriana/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/prevención & control , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/prevención & control , Canales Catiónicos TRPV/genética
3.
J Immunol ; 196(1): 428-36, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26597012

RESUMEN

Macrophage phagocytosis of particles and pathogens is an essential aspect of innate host defense. Phagocytic function requires cytoskeletal rearrangements that depend on the interaction between macrophage surface receptors, particulates/pathogens, and the extracellular matrix. In the present study we determine the role of a mechanosensitive ion channel, transient receptor potential vanilloid 4 (TRPV4), in integrating the LPS and matrix stiffness signals to control macrophage phenotypic change for host defense and resolution from lung injury. We demonstrate that active TRPV4 mediates LPS-stimulated murine macrophage phagocytosis of nonopsonized particles (Escherichia coli) in vitro and opsonized particles (IgG-coated latex beads) in vitro and in vivo in intact mice. Intriguingly, matrix stiffness in the range seen in inflamed or fibrotic lung is required to sensitize the TRPV4 channel to mediate the LPS-induced increment in macrophage phagocytosis. Furthermore, TRPV4 is required for the LPS induction of anti-inflammatory/proresolution cytokines. These findings suggest that signaling through TRPV4, triggered by changes in extracellular matrix stiffness, cooperates with LPS-induced signals to mediate macrophage phagocytic function and lung injury resolution. These mechanisms are likely to be important in regulating macrophage function in the context of pulmonary infection and fibrosis.


Asunto(s)
Lipopolisacáridos/inmunología , Lesión Pulmonar/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Células Cultivadas , Citocinas/biosíntesis , Citocinas/inmunología , Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Matriz Extracelular/metabolismo , Inmunoglobulina G/inmunología , Lesión Pulmonar/patología , Fenómenos Mecánicos , Ratones , Ratones Endogámicos C57BL , Microesferas , Fibrosis Pulmonar/inmunología , Transducción de Señal/inmunología
4.
J Biol Chem ; 291(12): 6083-95, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26763235

RESUMEN

Pro-fibrotic mesenchymal cells are known to be the key effector cells of fibroproliferative disease, but the specific matrix signals and the induced cellular responses that drive the fibrogenic phenotype remain to be elucidated. The key mediators of the fibroblast fibrogenic phenotype were characterized using a novel assay system that measures fibroblast behavior in response to actual normal and fibrotic lung tissue. Using this system, we demonstrate that normal lung promotes fibroblast motility and polarization, while fibrotic lung immobilizes the fibroblast and promotes myofibroblast differentiation. These context-specific phenotypes are surprisingly both mediated by myosin II. The role of myosin II is supported by the observation of an increase in myosin phosphorylation and a change in intracellular distribution in fibroblasts on fibrotic lung, as compared with normal lung. Moreover, loss of myosin II activity has opposing effects on protrusive activity in fibroblasts on normal and fibrotic lung. Loss of myosin II also selectively inhibits myofibroblast differentiation in fibroblasts on fibrotic lung. Importantly, these findings are recapitulated by varying the matrix stiffness of polyacrylamide gels in the range of normal and fibrotic lung tissue. Comparison of the effects of myosin inhibition on lung tissue with that of polyacrylamide gels suggests that matrix fiber organization drives the fibroblast phenotype under conditions of normal/soft lung, while matrix stiffness drives the phenotype under conditions of fibrotic/stiff lung. This work defines novel roles for myosin II as a key regulatory effector molecule of the pro-fibrotic phenotype, in response to biophysical properties of the matrix.


Asunto(s)
Fibroblastos/fisiología , Miosina Tipo II/fisiología , Fibrosis Pulmonar/metabolismo , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Polaridad Celular , Forma de la Célula , Matriz Extracelular/fisiología , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fenotipo , Fibrosis Pulmonar/patología
5.
J Neurooncol ; 131(3): 449-458, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27858267

RESUMEN

The circulating levels of soluble tumor necrosis factor receptor-1 (sTNF-R1) and sTNF-R2 are altered in numerous diseases, including several types of cancer. Correlations with the risk of progression in some cancers, as well as systemic manifestations of the disease and therapeutic side-effects, have been described. However, there is very little information on the levels of these soluble receptors in glioblastoma (GBM). Here, we report on an exploratory retrospective study of the levels of sTNF-Rs in the vascular circulation of patients with GBM. Banked samples were obtained from 112 GBM patients (66 untreated, newly-diagnosed patients and 46 with recurrent disease) from two institutions. The levels of sTNF-R1 in the plasma were significantly lower in patients with newly-diagnosed or recurrent GBM than apparently healthy individuals and correlated with the intensity of expression of TNF-R1 on the tumor-associated endothelial cells (ECs) in the corresponding biopsies. Elevated levels of sTNF-R1 in patients with recurrent, but not newly-diagnosed GBM, were significantly associated with a shorter survival, independent of age (p = 0.02) or steroid medication. In contrast, the levels of circulating sTNF-R2 were significantly higher in recurrent GBM than healthy individuals and there was no significant correlation with expression of TNF-R2 on the tumor-associated ECs or survival time. The results indicate that larger, prospective studies are warranted to determine the predictive value of the levels of sTNF-R1 in patients with recurrent GBM and the factors that regulate the levels of sTNF-Rs in the circulation in GBM patients.


Asunto(s)
Glioblastoma/sangre , Recurrencia Local de Neoplasia/sangre , Receptores Tipo II del Factor de Necrosis Tumoral/sangre , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
6.
J Biol Chem ; 289(18): 12791-804, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24644284

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5ß1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with ß1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5ß1 integrin and uPAR drive the translocation of α5ß1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.


Asunto(s)
Movimiento Celular , Fibroblastos/metabolismo , Integrina alfa5beta1/metabolismo , Microdominios de Membrana/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Western Blotting , Caveolinas/genética , Caveolinas/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibronectinas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Integrina alfa5beta1/genética , Ratones , Microscopía Fluorescente , Unión Proteica , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Interferencia de ARN , Receptores del Activador de Plasminógeno Tipo Uroquinasa/sangre , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Índice de Severidad de la Enfermedad , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
7.
Am J Pathol ; 182(5): 1572-84, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23499373

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease whose underlying molecular mechanisms are largely unknown. Herein, we show that focal adhesion kinase-related nonkinase (FRNK) plays a key role in limiting the development of lung fibrosis. Loss of FRNK function in vivo leads to increased lung fibrosis in an experimental mouse model. The increase in lung fibrosis is confirmed at the histological, biochemical, and physiological levels. Concordantly, loss of FRNK function results in increased fibroblast migration and myofibroblast differentiation and activation of signaling proteins that drive these phenotypes. FRNK-deficient murine lung fibroblasts also have an increased capacity to produce and contract matrix proteins. Restoration of FRNK expression in vivo and in vitro reverses these profibrotic phenotypes. These data demonstrate the multiple antifibrotic actions of FRNK. More important, FRNK expression is down-regulated in human IPF, and down-regulation of FRNK in normal human lung fibroblasts recapitulates the profibrotic phenotype seen in FRNK-deficient cells. The effect of loss and gain of FRNK in the experimental model, when taken together with its down-regulation in human IPF, suggests that FRNK acts as an endogenous negative regulator of lung fibrosis by repressing multiple profibrotic responses.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/patología , Adulto , Animales , Bleomicina , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Miofibroblastos/enzimología , Miofibroblastos/patología , Proteínas Tirosina Quinasas/deficiencia , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología
8.
Front Immunol ; 12: 767319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795674

RESUMEN

The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.


Asunto(s)
Inmunidad Innata/inmunología , Macrófagos/inmunología , Mecanotransducción Celular/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Canales Iónicos/inmunología , Canales Iónicos/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Canales Catiónicos TRPV/inmunología , Canales Catiónicos TRPV/metabolismo
9.
Front Immunol ; 11: 1211, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676078

RESUMEN

Ion channels/pumps are essential regulators of innate immune cell function. Macrophages have been increasingly recognized to have phenotypic plasticity and location-specific functions in the lung. Transient receptor potential vanilloid 4 (TRPV4) function in lung injury has been shown to be stimulus- and cell-type specific. In the current review, we discuss the importance of TRPV4 in macrophages and its role in phagocytosis and cytokine secretion in acute lung injury/acute respiratory distress syndrome (ARDS). Furthermore, TRPV4 controls a MAPK molecular switch from predominately c-Jun N-terminal kinase, JNK activation, to that of p38 activation, that mediates phagocytosis and cytokine secretion in a matrix stiffness-dependent manner. Expanding knowledge regarding the downstream mechanisms by which TRPV4 acts to tailor macrophage function in pulmonary inflammatory diseases will allow for formulation of novel therapeutics.


Asunto(s)
Susceptibilidad a Enfermedades , Inmunidad Innata , Inmunomodulación , Neumonía/etiología , Neumonía/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Plasticidad de la Célula , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Neumonía/patología , Transducción de Señal , Canales Catiónicos TRPV/genética
10.
Sci Signal ; 12(607)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719171

RESUMEN

Myofibroblasts are key contributors to pathological fibrotic conditions of several major organs. The transdifferentiation of fibroblasts into myofibroblasts requires both a mechanical signal and transforming growth factor-ß (TGF-ß) signaling. The cation channel transient receptor potential vanilloid 4 (TRPV4) is a critical mediator of myofibroblast transdifferentiation and in vivo fibrosis through its mechanosensitivity to extracellular matrix stiffness. Here, we showed that TRPV4 promoted the transdifferentiation of human and mouse lung fibroblasts through its interaction with phosphoinositide 3-kinase γ (PI3Kγ), forming nanomolar-affinity, intracellular TRPV4-PI3Kγ complexes. TGF-ß induced the recruitment of TRPV4-PI3Kγ complexes to the plasma membrane and increased the activities of both TRPV4 and PI3Kγ. Using gain- and loss-of-function approaches, we showed that both TRPV4 and PI3Kγ were required for myofibroblast transdifferentiation as assessed by the increased production of α-smooth muscle actin and its incorporation into stress fibers, cytoskeletal changes, collagen-1 production, and contractile force. Expression of various mutant forms of the PI3Kγ catalytic subunit (p110γ) in cells lacking PI3Kγ revealed that only the noncatalytic, amino-terminal domain of p110γ was necessary and sufficient for TGF-ß-induced TRPV4 plasma membrane recruitment and myofibroblast transdifferentiation. These data suggest that TGF-ß stimulates a noncanonical scaffolding action of PI3Kγ, which recruits TRPV4-PI3Kγ complexes to the plasma membrane, thereby increasing myofibroblast transdifferentiation. Given that both TRPV4 and PI3Kγ have pleiotropic actions, targeting the interaction between them could provide a specific therapeutic approach for inhibiting myofibroblast transdifferentiation.


Asunto(s)
Membrana Celular/metabolismo , Transdiferenciación Celular , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Miofibroblastos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Línea Celular , Membrana Celular/genética , Membrana Celular/patología , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Canales Catiónicos TRPV/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
11.
Front Immunol ; 8: 503, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523001

RESUMEN

Ion channels/pumps are essential regulators of organ homeostasis and disease. In the present review, we discuss the role of the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypotonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing mucociliary clearance, while at the same time increasing pro-inflammatory cytokine secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory diseases is likely important to understanding disease pathogenesis and may lead to novel therapeutics.

12.
J Clin Invest ; 124(12): 5225-38, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25365224

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disorder with no effective medical treatments available. The generation of myofibroblasts, which are critical for fibrogenesis, requires both a mechanical signal and activated TGF-ß; however, it is not clear how fibroblasts sense and transmit the mechanical signal(s) that promote differentiation into myofibroblasts. As transient receptor potential vanilloid 4 (TRPV4) channels are activated in response to changes in plasma membrane stretch/matrix stiffness, we investigated whether TRPV4 contributes to generation of myofibroblasts and/or experimental lung fibrosis. We determined that TRPV4 activity is upregulated in lung fibroblasts derived from patients with IPF. Moreover, TRPV4-deficient mice were protected from fibrosis. Furthermore, genetic ablation or pharmacological inhibition of TRPV4 function abrogated myofibroblast differentiation, which was restored by TRPV4 reintroduction. TRPV4 channel activity was elevated when cells were plated on matrices of increasing stiffness or on fibrotic lung tissue, and matrix stiffness-dependent myofibroblast differentiation was reduced in response to TRVP4 inhibition. TRPV4 activity modulated TGF-ß1-dependent actions in a SMAD-independent manner, enhanced actomyosin remodeling, and increased nuclear translocation of the α-SMA transcription coactivator (MRTF-A). Together, these data indicate that TRPV4 activity mediates pulmonary fibrogenesis and suggest that manipulation of TRPV4 channel activity has potential as a therapeutic approach for fibrotic diseases.


Asunto(s)
Diferenciación Celular , Pulmón/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Canales Catiónicos TRPV/biosíntesis , Regulación hacia Arriba , Animales , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacología , Bleomicina/efectos adversos , Bleomicina/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Pulmón/patología , Ratones , Ratones Mutantes , Miofibroblastos/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Canales Catiónicos TRPV/genética , Transactivadores/genética , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA