RESUMEN
Mammalian-wide interspersed repeats (MIRs) are retrotransposed elements of mammalian genomes. Here, we report the specific binding of zinc finger protein ZNF768 to the sequence motif GCTGTGTG (N20) CCTCTCTG in the core region of MIRs. ZNF768 binding is preferentially associated with euchromatin and promoter regions of genes. Binding was observed for genes expressed in a cell type-specific manner in human B cell line Raji and osteosarcoma U2OS cells. Mass spectrometric analysis revealed binding of ZNF768 to Elongator components Elp1, Elp2 and Elp3 and other nuclear factors. The N-terminus of ZNF768 contains a heptad repeat array structurally related to the C-terminal domain (CTD) of RNA polymerase II. This array evolved in placental animals but not marsupials and monotreme species, displays species-specific length variations, and possibly fulfills CTD related functions in gene regulation. We propose that the evolution of MIRs and ZNF768 has extended the repertoire of gene regulatory mechanisms in mammals and that ZNF768 binding is associated with cell type-specific gene expression.
Asunto(s)
Retroelementos , Factores de Transcripción/metabolismo , Transcripción Genética , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular , ADN/química , ADN/metabolismo , Eucromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Motivos de Nucleótidos , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/químicaRESUMEN
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3' end formation of 47S rRNA independently of the PeBoW-complex.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Ciclo Celular , Humanos , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN , Células Tumorales CultivadasRESUMEN
Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.
Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , Transcripción Genética , Animales , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , ARN Helicasas DEAD-box/metabolismo , Retroalimentación Fisiológica/efectos de los fármacos , Flavonoides/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Noqueados , Piperidinas/farmacología , Procesamiento de Término de ARN 3'/efectos de los fármacos , Procesamiento de Término de ARN 3'/genética , ARN Polimerasa II/antagonistas & inhibidores , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Nucleolar Pequeño/metabolismo , Ribonucleasa III/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
High concentrations (> 100 µM) of the ribonucleoside analog 4-thiouridine (4sU) is widely used in methods for RNA analysis like photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and nascent messenger (m)RNA labeling (4sU-tagging). Here, we show that 4sU-tagging at low concentrations ≤ 10 µM can be used to measure production and processing of ribosomal (r)RNA. However, elevated concentrations of 4sU (> 50 µM), which are usually used for mRNA labeling experiments, inhibit production and processing of 47S rRNA. The inhibition of rRNA synthesis is accompanied by nucleoplasmic translocation of nucleolar nucleophosmin (NPM1), induction of the tumor suppressor p53, and inhibition of proliferation. We conclude that metabolic labeling of RNA by 4sU triggers a nucleolar stress response, which might influence the interpretation of results. Therefore, functional ribosome biogenesis, nucleolar integrity, and cell cycle should be addressed in 4sU labeling experiments.
Asunto(s)
Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/genética , Coloración y Etiquetado/métodos , Tiouridina/efectos adversos , Animales , Ciclo Celular , Nucléolo Celular/fisiología , Ratones , Nucleofosmina , Ribosomas/efectos de los fármacos , Estrés Fisiológico , Tiouridina/farmacologíaRESUMEN
Drugs for cancer therapy belong to different categories of chemical substances. The cellular targets for the therapeutic efficacy are often not unambiguously identified. Here, we describe the process of ribosome biogenesis as a target of a large variety of chemotherapeutic drugs. We determined the inhibitory concentration of 36 chemotherapeutic drugs for transcription and processing of ribosomal RNA by in vivo labeling experiments. Inhibitory drug concentrations were correlated to the loss of nucleolar integrity. The synergism of drugs inhibiting ribosomal RNA synthesis at different levels was studied. Drugs inhibited ribosomal RNA synthesis either at the level of (i) rRNA transcription (e.g. oxaliplatin, doxorubicin, mitoxantrone, methotrexate), (ii) early rRNA processing (e.g. camptothecin, flavopiridol, roscovitine), or (iii) late rRNA processing (e.g. 5-fluorouracil, MG-132, homoharringtonine). Blockage of rRNA transcription or early rRNA processing steps caused nucleolar disintegration, whereas blockage of late rRNA processing steps left the nucleolus intact. Flavopiridol and 5-fluorouracil showed a strong synergism for inhibition of rRNA processing. We conclude that inhibition of ribosome biogenesis by chemotherapeutic drugs potentially may contribute to the efficacy of therapeutic regimens.
Asunto(s)
Antineoplásicos/farmacología , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/clasificación , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/metabolismo , Sinergismo Farmacológico , Flavonoides/administración & dosificación , Fluorouracilo/administración & dosificación , Humanos , Piperidinas/administración & dosificación , Estabilidad Proteica/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/genética , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1-Bop1-WDR12 in yeast (Nop7p-Erb1p-Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.
Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Humanos , Ratones , Mutación , Proteínas Nucleares/genética , Nucleofosmina , Unión Proteica , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/fisiología , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.
Asunto(s)
Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Proteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Proteínas de Ciclo Celular , Fraccionamiento Celular , Línea Celular , Humanos , Ratones , Complejos Multiproteicos , Proteínas Nucleares/genética , Subunidades de Proteína/genética , Proteínas/genética , Precursores del ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genéticaRESUMEN
The nucleolar protein Pes1 interacts with Bop1 and WDR12 in a stable complex (PeBoW-complex) and its expression is tightly associated with cell proliferation. The yeast homologue Nop7p (Yph1p) functions in both, rRNA processing and cell cycle progression. The presence of a BRCT-domain (BRCA1 C-terminal) within Pes1 is quite unique for an rRNA processing factor, as this domain is normally found in factors involved in DNA-damage or repair pathways. Thus, the function of the BRCT-domain in Pes1 remains elusive. We established a conditional siRNA-based knock-down-knock-in system and analysed a panel of Pes1 truncation mutants for their functionality in ribosome synthesis in the absence of endogenous Pes1. Deletion of the BRCT-domain or single point mutations of highly conserved residues caused diffuse nucleoplasmic distribution and failure to replace endogenous Pes1 in rRNA processing. Further, the BRCT-mutants of Pes1 were less stable and not incorporated into the PeBoW-complex. Hence, the integrity of the BRCT-domain of Pes1 is crucial for nucleolar localization and its function in rRNA processing.
Asunto(s)
Nucléolo Celular/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas/química , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Línea Celular Tumoral , Humanos , Proteínas Nucleares/análisis , Mutación Puntual , Estructura Terciaria de Proteína/genética , Proteínas/análisis , Interferencia de ARN , Proteínas de Unión al ARN , Eliminación de SecuenciaRESUMEN
RNA interference (RNAi) is a powerful tool to analyze gene function in mammalian cells. However, the interpretation of RNAi knock-down phenotypes can be hampered by off-target effects or compound phenotypes, as many proteins combine multiple functions within one molecule and coordinate the assembly of multimolecular complexes. Replacing the endogenous protein with ectopic wild-type or mutant forms can exclude off-target effects, preserve complexes and unravel specific roles of domains or modifications. Therefore, we developed a rapid-knock-down-knock-in system for mammalian cells. Stable polyclonal cell lines were generated within 2 weeks by simultaneous selection of two episomal vectors. Together these vectors mediated reconstitution and knock-down in a doxycycline-dependent manner to allow the analysis of essential genes. Depletion was achieved by an artificial miRNA-embedded siRNA targeting the untranslated region of the endogenous, but not the ectopic mRNA. To prove effectiveness, we tested 17 mutants of WDR12, a factor essential for ribosome biogenesis and cell proliferation. Loss-off function phenotypes were rescued by the wild-type and six mutant forms, but not by the remaining mutants. Thus, our system is suitable to exclude off-target effects and to functionally analyze mutants in cells depleted for the endogenous protein.
Asunto(s)
Marcación de Gen/métodos , Proteínas/fisiología , Interferencia de ARN , Proteínas de Ciclo Celular , Línea Celular Tumoral , Genes Esenciales , Humanos , MicroARNs/metabolismo , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas/antagonistas & inhibidores , Proteínas/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , TransfecciónRESUMEN
The nucleolar PeBoW-complex, consisting of Pes1, Bop1 and WDR12, is essential for cell proliferation and processing of ribosomal RNA in mammalian cells. Here we have analysed the physical and functional interactions of Pes1 deletion mutants with the PeBoW-complex. Pes1 mutants M1 and M5, with N- and C-terminal truncations, respectively, displayed a dominant-negative phenotype. Both mutants showed nucleolar localization, blocked processing of the 36S/32S precursors to mature 28S rRNA, inhibited cell proliferation, and induced high p53 levels in proliferating, but not in resting cells. Mutant M1 and M5 proteins associated with large pre-ribosomal complexes and co-immunoprecipitated Bop1 and WDR12 proteins indicating their proper incorporation into the PeBoW-complex. We conclude that the dominant-negative effect of the M1 and M5 mutants is mediated by the impaired function of the PeBoW-complex.