Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(11-12): 836-848, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907651

RESUMEN

Attenuation of pre-rRNA synthesis in response to elevated temperature is accompanied by increased levels of PAPAS ("promoter and pre-rRNA antisense"), a long noncoding RNA (lncRNA) that is transcribed in an orientation antisense to pre-rRNA. Here we show that PAPAS interacts directly with DNA, forming a DNA-RNA triplex structure that tethers PAPAS to a stretch of purines within the enhancer region, thereby guiding associated CHD4/NuRD (nucleosome remodeling and deacetylation) to the rDNA promoter. Protein-RNA interaction experiments combined with RNA secondary structure mapping revealed that the N-terminal part of CHD4 interacts with an unstructured A-rich region in PAPAS. Deletion or mutation of this sequence abolishes the interaction with CHD4. Stress-dependent up-regulation of PAPAS is accompanied by dephosphorylation of CHD4 at three serine residues, which enhances the interaction of CHD4/NuRD with RNA and reinforces repression of rDNA transcription. The results emphasize the function of lncRNAs in guiding chromatin remodeling complexes to specific genomic loci and uncover a phosphorylation-dependent mechanism of CHD4/NuRD-mediated transcriptional regulation.


Asunto(s)
ADN Ribosómico/genética , Regulación de la Expresión Génica/genética , Calor , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/metabolismo , ARN Ribosómico/genética , Estrés Fisiológico/genética , Animales , Elementos de Facilitación Genéticos , Células HEK293 , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Estructura Secundaria de Proteína , ARN Ribosómico/biosíntesis
2.
Genes Dev ; 31(13): 1370-1381, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790157

RESUMEN

R loops are three-stranded nucleic acid structures consisting of an RNA:DNA heteroduplex and a "looped-out" nontemplate strand. As aberrant formation and persistence of R loops block transcription elongation and cause DNA damage, mechanisms that resolve R loops are essential for genome stability. Here we show that the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase DDX21 efficiently unwinds R loops and that depletion of DDX21 leads to accumulation of cellular R loops and DNA damage. Significantly, the activity of DDX21 is regulated by acetylation. Acetylation by CBP inhibits DDX21 activity, while deacetylation by SIRT7 augments helicase activity and overcomes R-loop-mediated stalling of RNA polymerases. Knockdown of SIRT7 leads to the same phenotype as depletion of DDX21 (i.e., increased formation of R loops and DNA double-strand breaks), indicating that SIRT7 and DDX21 cooperate to prevent R-loop accumulation, thus safeguarding genome integrity. Moreover, DDX21 resolves estrogen-induced R loops on estrogen-responsive genes in breast cancer cells, which prevents the blocking of transcription elongation on these genes.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Inestabilidad Genómica/genética , Conformación de Ácido Nucleico , Sirtuinas/metabolismo , Acetilación , ARN Helicasas DEAD-box/genética , ADN/química , ADN/genética , Daño del ADN/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Sirtuinas/genética
3.
Cell ; 133(4): 577-80, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485866

RESUMEN

The synthesis of ribosomal RNA (rRNA) is carefully tuned to match nutritional conditions. In this issue, Murayama et al. (2008) describe a mechanism that couples the energy status of the cell to heterochromatin formation and silencing of rRNA genes. They show that an altered NAD(+)/NADH ratio in response to glucose starvation regulates the silencing activity of eNoSC, a complex consisting of the NAD(+)-dependent histone deacetylase SIRT1, the histone methyltransferase SUV39H1, and a new protein called nucleomethylin (NML). These results suggest a mechanism that links cell physiology to rDNA silencing, which in turn is a prerequisite for nucleolar integrity and cell survival.


Asunto(s)
ADN Ribosómico/genética , Metabolismo Energético , Epigénesis Genética , Animales , Nucléolo Celular/metabolismo , Supervivencia Celular , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , NAD/metabolismo , Proteína Metiltransferasas , Sirtuinas/metabolismo
4.
Mol Cell ; 60(4): 626-36, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590717

RESUMEN

Although thousands of long noncoding RNAs (lncRNAs) have been discovered, very little is known about their mode of action. Here we functionally characterize an E2F1-regulated lncRNA named Khps1, which is transcribed in antisense orientation to the proto-oncogene SPHK1. Khps1 activates SPHK1 expression by recruiting the histone acetyltransferase p300/CBP to the SPHK1 promoter, which leads to local changes of the chromatin structure that ensures E2F1 binding and enhances transcription. Mechanistically, this is achieved by direct association of Khps1 with a homopurine stretch upstream of the transcription start site of SPHK1, which forms a DNA-RNA triplex that anchors the lncRNA and associated effector proteins to the gene promoter. The results reveal an lncRNA- and E2F1-driven regulatory loop in which E2F1-dependent induction of antisense RNA leads to changes in chromatin structure, facilitating E2F1-dependent expression of SPHK1 and restriction of E2F1-induced apoptosis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factor de Transcripción E2F1/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Largo no Codificante/metabolismo , Apoptosis , Proliferación Celular , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Factores de Transcripción p300-CBP/metabolismo
5.
Mol Cell ; 54(4): 675-82, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24768537

RESUMEN

A complex network of regulatory pathways links transcription to cell growth and proliferation. Here we show that cellular quiescence alters chromatin structure by promoting trimethylation of histone H4 at lysine 20 (H4K20me3). In contrast to pericentric or telomeric regions, recruitment of the H4K20 methyltransferase Suv4-20h2 to rRNA genes and IAP elements requires neither trimethylation of H3K9 nor interaction with HP1 proteins but depends on long noncoding RNAs (lncRNAs) that interact with Suv4-20h2. Growth factor deprivation and terminal differentiation lead to upregulation of these lncRNAs, increase in H4K20me3, and chromatin compaction. The results uncover a lncRNA-mediated mechanism that guides Suv4-20h2 to specific genomic loci to establish a more compact chromatin structure in growth-arrested cells.


Asunto(s)
Cromatina/metabolismo , Silenciador del Gen , Genes de ARNr , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Proliferación Celular , Cromatina/genética , Regulación de la Expresión Génica , Genes de Partícula A Intracisternal , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/genética , Metilación , Ratones , Células 3T3 NIH , ARN Largo no Codificante/genética , Telómero/genética
6.
Mol Cell ; 55(4): 604-14, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25087872

RESUMEN

DNA methylation is a dynamic and reversible process that governs gene expression during development and disease. Several examples of active DNA demethylation have been documented, involving genome-wide and gene-specific DNA demethylation. How demethylating enzymes are targeted to specific genomic loci remains largely unknown. We show that an antisense lncRNA, termed TARID (for TCF21 antisense RNA inducing demethylation), activates TCF21 expression by inducing promoter demethylation. TARID interacts with both the TCF21 promoter and GADD45A (growth arrest and DNA-damage-inducible, alpha), a regulator of DNA demethylation. GADD45A in turn recruits thymine-DNA glycosylase for base excision repair-mediated demethylation involving oxidation of 5-methylcytosine to 5-hydroxymethylcytosine in the TCF21 promoter by ten-eleven translocation methylcytosine dioxygenase proteins. The results reveal a function of lncRNAs, serving as a genomic address label for GADD45A-mediated demethylation of specific target genes.


Asunto(s)
5-Metilcitosina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Ciclo Celular/metabolismo , Citosina/análogos & derivados , Metilación de ADN/fisiología , Neoplasias/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/fisiología , Timina ADN Glicosilasa/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Islas de CpG/fisiología , Citosina/metabolismo , Metilación de ADN/genética , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Células HEK293 , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/fisiología , ARN Largo no Codificante/genética
7.
Trends Biochem Sci ; 42(8): 585-587, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28633974

RESUMEN

Sinturel et al. demonstrate that feeding-fasting rhythms and light-dark cycles direct daily changes in liver mass and cell size. These feeding-fasting- and light-dark-driven diurnal fluctuations are controlled by an unconventional mechanism that affects ribosome assembly and protein levels during the active phase.


Asunto(s)
Ritmo Circadiano , Ribosomas , Luz , Hígado/fisiología , Fotoperiodo
8.
Mol Cell ; 52(3): 303-13, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24207024

RESUMEN

Sirtuins are NAD(+)-dependent protein deacetylases that connect metabolism and cellular homeostasis. Here we show that the nuclear Sirtuin SIRT7 targets PAF53, a subunit of RNA polymerase I (Pol I). Acetylation of PAF53 at lysine 373 by CBP and deacetylation by SIRT7 modulate the association of Pol I with DNA, hypoacetylation correlating with increased rDNA occupancy of Pol I and transcription activation. SIRT7 is released from nucleoli in response to different stress conditions, leading to hyperacetylation of PAF53 and decreased Pol I transcription. Nucleolar detention requires binding of SIRT7 to nascent pre-rRNA, linking the spatial distribution of SIRT7 and deacetylation of PAF53 to ongoing transcription. The results identify a nonhistone target of SIRT7 and uncover an RNA-mediated mechanism that adapts nucleolar transcription to stress signaling.


Asunto(s)
ARN Polimerasa I/genética , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Acetilación , Proteína de Unión a CREB/metabolismo , Células HEK293 , Humanos , Lisina/genética , ARN Polimerasa I/antagonistas & inhibidores , Precursores del ARN/metabolismo , Sirtuinas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética
9.
Nucleic Acids Res ; 47(5): 2306-2321, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30605520

RESUMEN

RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including super-enhancers and repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.


Asunto(s)
ADN/química , ADN/aislamiento & purificación , Conformación de Ácido Nucleico , ARN/química , ARN/aislamiento & purificación , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , ADN/genética , Elementos de Facilitación Genéticos/genética , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Purinas/química , Purinas/metabolismo , ARN/genética , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
10.
Nucleic Acids Res ; 47(6): e32, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698727

RESUMEN

Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.


Asunto(s)
Biología Computacional/métodos , ADN/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Algoritmos , Secuencia de Bases , Sitios de Unión/genética , ADN/química , Expresión Génica , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/metabolismo
11.
RNA ; 24(3): 371-380, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29222118

RESUMEN

Triplexes are noncanonical DNA structures, which are functionally associated with regulation of gene expression through ncRNA targeting to chromatin. Based on the rules of Hoogsteen base-pairing, polypurine sequences of a duplex can potentially form triplex structures with single-stranded oligonucleotides. Prediction of triplex-forming sequences by bioinformatics analyses have revealed enrichment of potential triplex targeting sites (TTS) at regulatory elements, mainly in promoters and enhancers, suggesting a potential function of RNA-DNA triplexes in transcriptional regulation. Here, we have quantitatively evaluated the potential of different sequences of human and mouse ribosomal RNA genes (rDNA) to form triplexes at different salt and pH conditions. We show by biochemical and biophysical approaches that some of these predicted sequences form triplexes with high affinity, following the canonical rules for triplex formation. We further show that RNA triplex-forming oligos (TFOs) are more stable than their DNA counterpart, and point mutations strongly affect triplex formation. We further show differential sequence requirements of pyrimidine and purine TFO sequences for efficient binding, depending on the G-C content of the TTS. The unexpected sequence specificity, revealing distinct sequence requirements for purine and pyrimidine TFOs, shows that in addition to the Hoogsteen pairing rules, a sequence code and mutations have to be taken into account to predict genomic TTS.


Asunto(s)
ADN Ribosómico/genética , ADN/genética , Oligonucleótidos/genética , Animales , Emparejamiento Base , Sitios de Unión , ADN/química , ADN Ribosómico/química , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ratones , Oligonucleótidos/química , Mutación Puntual , Regiones Promotoras Genéticas/genética , Purinas/química , Pirimidinas/química , Secuencias Reguladoras de Ácidos Nucleicos/genética
12.
EMBO J ; 34(22): 2758-74, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26464461

RESUMEN

Non-coding RNAs play a key role in organizing the nucleus into functional subcompartments. By combining fluorescence microscopy and RNA deep-sequencing-based analysis, we found that RNA polymerase II transcripts originating from intronic Alu elements (aluRNAs) were enriched in the nucleolus. Antisense-oligo-mediated depletion of aluRNAs or drug-induced inhibition of RNA polymerase II activity disrupted nucleolar structure and impaired RNA polymerase I-dependent transcription of rRNA genes. In contrast, overexpression of a prototypic aluRNA sequence increased both nucleolus size and levels of pre-rRNA, suggesting a functional link between aluRNA, nucleolus integrity and pre-rRNA synthesis. Furthermore, we show that aluRNAs interact with nucleolin and target ectopic genomic loci to the nucleolus. Our study suggests an aluRNA-based mechanism that links RNA polymerase I and II activities and modulates nucleolar structure and rRNA production.


Asunto(s)
Nucléolo Celular/metabolismo , Sitios Genéticos , Precursores del ARN/metabolismo , ARN no Traducido/metabolismo , Elementos Alu , Nucléolo Celular/genética , Células HeLa , Humanos , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos Antisentido/farmacología , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , ARN no Traducido/genética
13.
Nucleic Acids Res ; 45(5): 2675-2686, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28426094

RESUMEN

SIRT7 is an NAD+-dependent protein deacetylase that regulates cell growth and proliferation. Previous studies have shown that SIRT7 is required for RNA polymerase I (Pol I) transcription and pre-rRNA processing. Here, we took a proteomic approach to identify novel molecular targets and characterize the role of SIRT7 in non-nucleolar processes. We show that SIRT7 interacts with numerous proteins involved in transcriptional regulation and RNA metabolism, the majority of interactions requiring ongoing transcription. In addition to its role in Pol I transcription, we found that SIRT7 also regulates transcription of snoRNAs and mRNAs. Mechanistically, SIRT7 promotes the release of P-TEFb from the inactive 7SK snRNP complex and deacetylates CDK9, a subunit of the elongation factor P-TEFb, which activates transcription by phosphorylating serine 2 within the C-terminal domain (CTD) of Pol II. SIRT7 counteracts GCN5-directed acetylation of lysine 48 within the catalytic domain of CDK9, deacetylation promoting CTD phosphorylation and transcription elongation.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/metabolismo , Sirtuinas/metabolismo , Activación Transcripcional , Línea Celular , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN/metabolismo , ARN Nucleolar Pequeño/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Sirtuinas/química
14.
Nucleic Acids Res ; 44(17): 8144-52, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27257073

RESUMEN

Attenuation of ribosome biogenesis in suboptimal growth environments is crucial for cellular homeostasis and genetic integrity. Here, we show that shutdown of rRNA synthesis in response to elevated temperature is brought about by mechanisms that target both the RNA polymerase I (Pol I) transcription machinery and the epigenetic signature of the rDNA promoter. Upon heat shock, the basal transcription factor TIF-IA is inactivated by inhibition of CK2-dependent phosphorylations at Ser170/172. Attenuation of pre-rRNA synthesis in response to heat stress is accompanied by upregulation of PAPAS, a long non-coding RNA (lncRNA) that is transcribed in antisense orientation to pre-rRNA. PAPAS interacts with CHD4, the adenosine triphosphatase subunit of NuRD, leading to deacetylation of histones and movement of the promoter-bound nucleosome into a position that is refractory to transcription initiation. The results exemplify how stress-induced inactivation of TIF-IA and lncRNA-dependent changes of chromatin structure ensure repression of rRNA synthesis in response to thermo-stress.


Asunto(s)
Respuesta al Choque Térmico/genética , Nucleosomas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Largo no Codificante/metabolismo , ARN Ribosómico/biosíntesis , Animales , Quinasa de la Caseína II/metabolismo , Ensamble y Desensamble de Cromatina , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Regiones Promotoras Genéticas , Transcripción Genética
15.
PLoS Genet ; 11(5): e1005246, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26023773

RESUMEN

Mitotic repression of rRNA synthesis requires inactivation of the RNA polymerase I (Pol I)-specific transcription factor SL1 by Cdk1/cyclin B-dependent phosphorylation of TAF(I)110 (TBP-associated factor 110) at a single threonine residue (T852). Upon exit from mitosis, T852 is dephosphorylated by Cdc14B, which is sequestered in nucleoli during interphase and is activated upon release from nucleoli at prometaphase. Mitotic repression of Pol I transcription correlates with transient nucleolar enrichment of the NAD(+)-dependent deacetylase SIRT1, which deacetylates another subunit of SL1, TAFI68. Hypoacetylation of TAFI68 destabilizes SL1 binding to the rDNA promoter, thereby impairing transcription complex assembly. Inhibition of SIRT1 activity alleviates mitotic repression of Pol I transcription if phosphorylation of TAF(I)110 is prevented. The results demonstrate that reversible phosphorylation of TAF(I)110 and acetylation of TAFI68 are key modifications that regulate SL1 activity and mediate fluctuations of pre-rRNA synthesis during cell cycle progression.


Asunto(s)
Fosfatasas de Especificidad Dual/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Sirtuina 1/genética , Factor de Transcripción TFIID/genética , Transcripción Genética , Acetilación , Proteína Quinasa CDC2 , Nucléolo Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN , Fosfatasas de Especificidad Dual/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Humanos , Mitosis , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Sirtuina 1/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética
16.
Genes Dev ; 24(20): 2264-9, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20952535

RESUMEN

Noncoding RNAs are important components of regulatory networks controlling the epigenetic state of chromatin. We analyzed the role of pRNA (promoter-associated RNA), a noncoding RNA that is complementary to the rDNA promoter, in mediating de novo CpG methylation of rRNA genes (rDNA). We show that pRNA interacts with the target site of the transcription factor TTF-I, forming a DNA:RNA triplex that is specifically recognized by the DNA methyltransferase DNMT3b. The results reveal a compelling new mechanism of RNA-dependent DNA methylation, suggesting that recruitment of DNMT3b by DNA:RNA triplexes may be a common and generally used pathway in epigenetic regulation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN Ribosómico/genética , Genes de ARNr/genética , Regiones Promotoras Genéticas/genética , ARN no Traducido/metabolismo , Animales , Secuencia de Bases , Línea Celular , Inmunoprecipitación de Cromatina , Islas de CpG/genética , ADN/química , ADN/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Ribosómico/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN no Traducido/química , ARN no Traducido/genética , Factores de Transcripción , ADN Metiltransferasa 3B
17.
Mol Cell ; 33(3): 344-53, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217408

RESUMEN

Many studies have detailed the repressive effects of DNA methylation on gene expression. However, the mechanisms that promote active demethylation are just beginning to emerge. Here, we show that methylation of the rDNA promoter is a dynamic and reversible process. Demethylation of rDNA is initiated by recruitment of Gadd45a (growth arrest and DNA damage inducible protein 45 alpha) to the rDNA promoter by TAF12, a TBP-associated factor that is contained in Pol I- and Pol II-specific TBP-TAF complexes. Once targeted to rDNA, Gadd45a triggers demethylation of promoter-proximal DNA by recruiting the nucleotide excision repair (NER) machinery to remove methylated cytosines. Knockdown of Gadd45a, XPA, XPG, XPF, or TAF12 or treatment with drugs that inhibit NER causes hypermethylation of rDNA, establishes heterochromatic histone marks, and impairs transcription. The results reveal a mechanism that recruits the DNA repair machinery to the promoter of active genes, keeping them in a hypomethylated state.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metilación de ADN/genética , Reparación del ADN , Genes de ARNr/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Animales , Células Cultivadas , Daño del ADN , Humanos , Ratones , Células 3T3 NIH , Factores Asociados con la Proteína de Unión a TATA/genética , Transfección
18.
Nucleic Acids Res ; 43(10): 5208-20, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916849

RESUMEN

The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ARN/química , ARN/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Genes de ARNr , Células HEK293 , Humanos , Modelos Moleculares , Mutación Puntual , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/química , Proteínas de Unión al ARN/metabolismo
19.
Mol Cell ; 30(4): 486-97, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18498750

RESUMEN

The interaction of transcription factors with target genes is highly dynamic. Whether the dynamic nature of these interactions is merely an intrinsic property of transcription factors or serves a regulatory role is unknown. Here we have used single-cell fluorescence imaging combined with computational modeling and chromatin immunoprecipitation to analyze transcription complex dynamics in gene regulation during the cell cycle in living cells. We demonstrate a link between the dynamics of RNA polymerase I (RNA Pol I) assembly and transcriptional output. We show that transcriptional upregulation is accompanied by prolonged retention of RNA Pol I components at the promoter, resulting in longer promoter dwell time, and an increase in the steady-state population of assembling polymerase. As a consequence, polymerase assembly efficiency and, ultimately, the rate of entry into processive elongation are elevated. Our results show that regulation of rDNA transcription in vivo occurs via modulation of the efficiency of transcription complex subunit capture and assembly.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa I/metabolismo , Transcripción Genética , Animales , Ciclo Celular/fisiología , Células Cultivadas , ADN Ribosómico/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Regiones Promotoras Genéticas , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa I/química , ARN Polimerasa I/genética
20.
PLoS Genet ; 9(9): e1003786, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24068958

RESUMEN

Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes.


Asunto(s)
Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Células CHO , Cromatina/genética , Cricetulus , ADN Ribosómico/genética , Ratones , Nucleosomas/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Precursores del ARN/genética , Secuencias Reguladoras de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA