Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35914952

RESUMEN

Low complexity regions are fragments of protein sequences composed of only a few types of amino acids. These regions frequently occur in proteins and can play an important role in their functions. However, scientists are mainly focused on regions characterized by high diversity of amino acid composition. Similarity between regions of protein sequences frequently reflect functional similarity between them. In this article, we discuss strengths and weaknesses of the similarity analysis of low complexity regions using BLAST, HHblits and CD-HIT. These methods are considered to be the gold standard in protein similarity analysis and were designed for comparison of high complexity regions. However, we lack specialized methods that could be used to compare the similarity of low complexity regions. Therefore, we investigated the existing methods in order to understand how they can be applied to compare such regions. Our results are supported by exploratory study, discussion of amino acid composition and biological roles of selected examples. We show that existing methods need improvements to efficiently search for similar low complexity regions. We suggest features that have to be re-designed specifically for comparing low complexity regions: scoring matrix, multiple sequence alignment, e-value, local alignment and clustering based on a set of representative sequences. Results of this analysis can either be used to improve existing methods or to create new methods for the similarity analysis of low complexity regions.


Asunto(s)
Aminoácidos , Proteínas , Algoritmos , Secuencia de Aminoácidos , Aminoácidos/genética , Análisis por Conglomerados , Proteínas/química , Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína/métodos
2.
Brief Bioinform ; 21(2): 458-472, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-30698641

RESUMEN

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. SHORT ABSTRACT: There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.


Asunto(s)
Proteínas/química , Algoritmos , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Evolución Molecular , Conformación Proteica , Dominios Proteicos
3.
Nucleic Acids Res ; 48(W1): W77-W84, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32421769

RESUMEN

Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity-a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.


Asunto(s)
Proteínas/química , Programas Informáticos , Aminoácidos/análisis , Gráficos por Computador , Humanos , Proteínas de la Membrana/química , Anotación de Secuencia Molecular , Dominios Proteicos , Análisis de Secuencia de Proteína
4.
BMC Bioinformatics ; 22(1): 182, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832440

RESUMEN

BACKGROUND: The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS: We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS: Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.


Asunto(s)
Proteoma , SARS-CoV-2/genética , Homología de Secuencia , Vacunas contra la COVID-19 , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Fosfoproteínas/inmunología , Filogenia , ARN Polimerasa Dependiente del ARN/inmunología , Factores de Riesgo , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas no Estructurales Virales/inmunología
5.
Nucleic Acids Res ; 47(21): 10994-11006, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31584084

RESUMEN

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with 'ready-to-use' deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others.


Asunto(s)
ADN/genética , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Error Científico Experimental , Secuencias Repetidas en Tándem/genética , Animales , Gadus morhua/genética , Análisis de Secuencia de ADN
6.
J Am Chem Soc ; 141(42): 16817-16828, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31550880

RESUMEN

Electrostatic interactions play important roles in the functional mechanisms exploited by intrinsically disordered proteins (IDPs). The atomic resolution description of long-range and local structural propensities that can both be crucial for the function of highly charged IDPs presents significant experimental challenges. Here, we investigate the conformational behavior of the δ subunit of RNA polymerase from Bacillus subtilis whose unfolded domain is highly charged, with 7 positively charged amino acids followed by 51 acidic amino acids. Using a specifically designed analytical strategy, we identify transient contacts between the two regions using a combination of NMR paramagnetic relaxation enhancements, residual dipolar couplings (RDCs), chemical shifts, and small-angle scattering. This strategy allows the resolution of long-range and local ensemble averaged structural contributions to the experimental RDCs, and reveals that the negatively charged segment folds back onto the positively charged strand, compacting the conformational sampling of the protein while remaining highly flexible in solution. Mutation of the positively charged region abrogates the long-range contact, leaving the disordered domain in an extended conformation, possibly due to local repulsion of like-charges along the chain. Remarkably, in vitro studies show that this mutation also has a significant effect on transcription activity, and results in diminished cell fitness of the mutated bacteria in vivo. This study highlights the importance of accurately describing electrostatic interactions for understanding the functional mechanisms of IDPs.


Asunto(s)
Bacillus subtilis/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Proteica
7.
Hum Mol Genet ; 26(8): 1497-1510, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334785

RESUMEN

The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc.


Asunto(s)
Sustitución de Aminoácidos/genética , Neuroacantocitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Transporte Biológico/genética , Endosomas/genética , Humanos , Mutación , Neuroacantocitosis/patología , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética
8.
Appl Microbiol Biotechnol ; 103(18): 7617-7634, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31359102

RESUMEN

Various Lactobacillus paracasei strains are found in diverse environments, including dairy and plant materials and the intestinal tract of humans and animals, and are also used in the food industry or as probiotics. In this study, we have isolated a new strain L. paracasei subsp. paracasei IBB3423 from samples of raw cow milk collected in a citizen science project. IBB3423 showed some desired probiotic features such as high adhesion capacity and ability to metabolize inulin. Its complete genome sequence comprising the chromosome of 3,183,386 bp and two plasmids of 5986 bp and 51,211 bp was determined. In silico analysis revealed numerous genes encoding proteins involved in carbohydrate metabolism and of extracellular localization likely supporting interaction with host tissues. In vitro tests confirmed the high adhesion capacity of IBB3423 and showed that it even exceeds that of the highly adhesive L. rhamnosus GG. Curing of the larger plasmid indicated that the adhesive properties depend on the plasmid and thus could be determined by its pilus-encoding spaCBA genes.


Asunto(s)
Adhesión Bacteriana , Genoma Bacteriano , Genómica , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Leche/microbiología , Animales , Metabolismo de los Hidratos de Carbono , Ciencia Ciudadana , Fimbrias Bacterianas/genética , Inulina/metabolismo , Lacticaseibacillus paracasei/aislamiento & purificación , Familia de Multigenes , Plásmidos , Probióticos/aislamiento & purificación
9.
Proc Natl Acad Sci U S A ; 113(25): E3482-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27185916

RESUMEN

The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.


Asunto(s)
Proteínas Quinasas , Esporas Bacterianas/genética , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas de la Cápside , Fosforilación
10.
Mol Reprod Dev ; 83(2): 144-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26660717

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase from human sperm (GAPDHS) provides energy to the sperm flagellum, and is therefore essential for sperm motility and male fertility. This isoform is distinct from somatic GAPDH, not only in being specific for the testis but also because it contains an additional amino-terminal region that encodes a proline-rich motif that is known to bind to the fibrous sheath of the sperm tail. By conducting a large-scale sequence comparison on low-complexity sequences available in databases, we identified a strong similarity between the proline-rich motif from GAPDHS and the proline-rich sequence from Ena/vasodilator-stimulated phosphoprotein-like (EVL), which is known to bind an SH3 domain of dynamin-binding protein (DNMBP). The putative binding partners of the proline-rich GAPDHS motif include SH3 domain-binding protein 4 (SH3BP4) and the IL2-inducible T-cell kinase/tyrosine-protein kinase ITK/TSK (ITK). This result implies that GAPDHS participates in specific signal-transduction pathways. Gene Ontology category-enrichment analysis showed several functional classes shared by both proteins, of which the most interesting ones are related to signal transduction and regulation of hydrolysis. Furthermore, a mutation of one EVL proline to leucine is known to cause colorectal cancer, suggesting that mutation of homologous amino acid residue in the GAPDHS motif may be functionally deleterious.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Mutación Missense , Cola del Espermatozoide/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Leucina/genética , Leucina/metabolismo , Masculino , Prolina/genética , Prolina/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Dominios Homologos src/genética
11.
FEMS Yeast Res ; 15(6)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26091838

RESUMEN

Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.


Asunto(s)
Glutatión/metabolismo , Homeostasis , Mitocondrias/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Cadmio/toxicidad , Metabolismo Energético , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Oxidación-Reducción , Fitoquelatinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
12.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22046142

RESUMEN

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Asunto(s)
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicosis/microbiología , Proteínas Quinasas/genética , Metabolismo de los Hidratos de Carbono/genética , Sistemas de Liberación de Medicamentos , Evolución Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Familia de Multigenes/genética , Onygenales/enzimología , Paracoccidioides/enzimología , Filogenia , Proteolisis , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
13.
Mol Biol Evol ; 29(9): 2223-30, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22411854

RESUMEN

In this work, we report likely recurrent horizontal (lateral) gene transfer events of genes encoding pore-forming toxins of the aerolysin family between species belonging to different kingdoms of life. Clustering based on pairwise similarity and phylogenetic analysis revealed several distinct aerolysin sequence groups, each containing proteins from multiple kingdoms of life. These results strongly support at least six independent transfer events between distantly related phyla in the evolutionary history of one protein family and discount selective retention of ancestral genes as a plausible explanation for this patchy phylogenetic distribution. We discuss the possible roles of these proteins and show evidence for a convergent new function in two extant species. We hypothesize that certain gene families are more likely to be maintained following horizontal gene transfer from commensal or pathogenic organism to its host if they 1) can function alone; and 2) are immediately beneficial for the ecology of the organism, as in the case of pore-forming toxins which can be utilized in multicellular organisms for defense and predation.


Asunto(s)
Toxinas Bacterianas/genética , Eucariontes/genética , Transferencia de Gen Horizontal , Secuencia de Aminoácidos , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cnidarios/genética , Cnidarios/metabolismo , Eucariontes/metabolismo , Evolución Molecular , Expresión Génica , Datos de Secuencia Molecular , Filogenia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Alineación de Secuencia
14.
J Inorg Biochem ; 248: 112364, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689037

RESUMEN

Hepcidin is an iron regulatory hormone that does not bind iron directly. Instead, its mature 25-peptide form (H25) contains a binding site for other metals, the so-called ATCUN/NTS (amino-terminal Cu/Ni binding site). The Cu(II)-hepcidin complex was previously studied, but due to poor solubility and difficult handling of the peptide the definitive account on the binding equilibrium was not obtained reliably. In this study we performed a series of fluorescence competition experiments between H25 and its model peptides containing the same ATCUN/NTS site and determined the Cu(II) conditional binding constant of the CuH25 complex at pH 7.4, CK7.4 = 4 ± 2 × 1014 M-1. This complex was found to be very inert in exchange reactions and poorly reactive in the ascorbate consumption test. The consequences of these findings for the putative role of Cu(II) interactions with H25 are discussed.


Asunto(s)
Hepcidinas , Hierro , Humanos , Sitios de Unión , Fluorescencia , Dominios Proteicos
15.
J Biol Chem ; 286(10): 8448-8458, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21216948

RESUMEN

Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.


Asunto(s)
Bacillus anthracis/química , Proteínas Bacterianas/química , Pliegue de Proteína , Multimerización de Proteína/fisiología , Transactivadores/química , Factores de Virulencia/química , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transactivadores/genética , Transactivadores/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Mol Biol Evol ; 28(12): 3395-404, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21727238

RESUMEN

Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive.


Asunto(s)
Hongos/enzimología , Hongos/genética , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Subtilisinas/química , Subtilisinas/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Hongos/patogenicidad , Humanos , Onygenales/enzimología , Onygenales/genética , Filogenia , Estructura Terciaria de Proteína , Subtilisinas/metabolismo
17.
Genome Res ; 19(10): 1722-31, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19717792

RESUMEN

While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.


Asunto(s)
Coccidioides/genética , Genoma Fúngico , Hongos Mitospóricos/genética , Animales , Especiación Genética , Genómica/métodos , Histoplasma/genética , Humanos , Datos de Secuencia Molecular , Onygenales/genética , Filogenia , Selección Genética , Análisis de Secuencia de ADN , Sintenía
18.
Front Mol Biosci ; 9: 828674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359602

RESUMEN

Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.

20.
BMC Genomics ; 11: 590, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20964819

RESUMEN

BACKGROUND: Peroxide turnover and signalling are involved in many biological phenomena relevant to human diseases. Yet, all the players and mechanisms involved in peroxide perception are not known. Elucidating very remote evolutionary relationships between proteins is an approach that allows the discovery of novel protein functions. Here, we start with three human proteins, SRPX, SRPX2 and CCDC80, involved in tumor suppression and progression, which possess a conserved region of similarity. Structure and function prediction allowed the definition of P-DUDES, a phylogenetically widespread, possibly ancient protein structural domain, common to vertebrates and many bacterial species. RESULTS: We show, using bioinformatics approaches, that the P-DUDES domain, surprisingly, adopts the thioredoxin-like (Thx-like) fold. A tentative, more detailed prediction of function is made, namely, that of a 2-Cys peroxiredoxin. Incidentally, consistent overexpression of all three human P-DUDES genes in two public glioblastoma microarray gene expression datasets was discovered. This finding is discussed in the context of the tumor suppressor role that has been ascribed to P-DUDES proteins in several studies. Majority of non-redundant P-DUDES proteins are found in marine metagenome, and among the bacterial species possessing this domain a trend for a higher proportion of aquatic species is observed. CONCLUSIONS: The new protein structural domain, now with a broad enzymatic function predicted, may become a drug target once its detailed molecular mechanism of action is understood in detail.


Asunto(s)
Progresión de la Enfermedad , Peroxirredoxinas/química , Proteínas Supresoras de Tumor/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia Conservada/genética , Glioblastoma/patología , Humanos , Proteínas de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Multimerización de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA