Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Exp Cell Res ; 396(1): 112265, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898553

RESUMEN

Many bone diseases result from abnormal bone resorption by osteoclasts (OCs). Studying OC related regulatory genes is necessary for the development of new therapeutic strategies. Rho GTPases have been proven to regulate OC differentiation and function and only mature OCs can carry out bone resorption. Here we demonstrate that Rac1 and Cdc42 exchange factor Triple functional domain (Trio) is critical for bone resorption caused by OCs. In this study, we created LysM-Cre;Triofl/fl conditional knockout mice in which Trio was conditionally ablated in monocytes. LysM-Cre;Triofl/fl mice showed increased bone mass due to impaired bone resorption caused by OCs. Furthermore, our in vitro analysis indicated that Trio conditional deficiency significantly suppressed OC differentiation and function. At the molecular level, Trio deficiency significantly inhibited the expression of genes critical for osteoclastogenesis and OC function. Mechanistically, our researches suggested that perturbed Rac1/Cdc42-PAK1-ERK/p38 signaling could be used to explain the lower ability of bone resorption in CKO mice. Taken together, this study indicates that Trio is a regulator of OCs. Studying the role of Trio in OCs provides a potential new insight for the treatment of OC related bone diseases.


Asunto(s)
Resorción Ósea/genética , Fémur/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Neuropéptidos/genética , Osteoclastos/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Femenino , Fémur/citología , Fémur/efectos de los fármacos , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neuropéptidos/metabolismo , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fosfoproteínas/deficiencia , Proteínas Serina-Treonina Quinasas/deficiencia , Ligando RANK/farmacología , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39003214

RESUMEN

It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.

3.
Plants (Basel) ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202411

RESUMEN

The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in RFO-translocating species. Here, whole-genome bisulfite sequencing (WGBS-seq) was conducted to compare the nonfruiting-node leaves (NFNLs) and leaves of fruit setting (FNLs) at the 12th node by removing all female flowers in other nodes of the two treatments. We found considerable differentially methylated genes enriched in photosynthesis and carbohydrate metabolic processes. Comparative transcriptome analysis between FNLs and NFNLs indicated that many differentially expressed genes (DEGs) with differentially methylated regions were involved in auxin, ethylene and brassinolide metabolism; sucrose metabolism; and RFO synthesis pathways related to sink-source regulation. Moreover, DNA methylation levels of six sink-source-related genes in the pathways mentioned above decreased in leaves after 5-aza-dC-2'-deoxycytidine (5-Aza-dC, a DNA methyltransferase inhibitor) treatment on FNLs, and stachyose synthase (CsSTS) gene expression, enzyme activity and stachyose content in RFO synthesis pathway were upregulated, thereby increasing fruit length and dry weight. Taken together, our findings proposed an up-to-date inference for the potential role of DNA methylation in the sink-source relationship, which will provide important references for further exploring the molecular mechanism of DNA methylation in improving the yield of RFO transport plants.

4.
Theranostics ; 11(17): 8379-8395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373748

RESUMEN

Growth disorders in the orofacial bone development process may lead to orofacial deformities. The balance between bone matrix formation by mesenchymal lineage osteoblasts and bone resorption by osteoclasts is vital for orofacial bone development. Although the mechanisms of orofacial mesenchymal stem cells (OMSCs) in orofacial bone development have been studied intensively, the communication between OMSCs and osteoclasts remains largely unclear. Methods: We used a neural crest cell-specific knockout mouse model to investigate orofacial bone development in GATA-binding protein 4 (GATA4) morphants. We investigated the underlying mechanisms of OMSCs-derived exosomes (OMExos) on osteoclastogenesis and bone resorption activity in vitro. miRNAs were extracted from OMExos, and differences in miRNA abundances were determined using an Affymetrix miRNA array. Luciferase reporter assays were used to validate the binding between GATA4 and miR-206-3p in OMSCs and to confirm the putative binding of miR-206-3p and its target genes in OMSCs and osteoclasts. The regulatory mechanism of the GATA4-miR-206-3p axis in OMSC osteogenic differentiation and osteoclastogenesis was examined in vitro and in vivo. Results: Wnt1-Cre;Gata4fl/fl mice (cKO) not only presented inhibited bone formation but also showed active bone resorption. Osteoclasts cocultured in vitro with cKO OMSCs presented an increased capacity for osteoclastogenesis, which was exosome-dependent. Affymetrix miRNA array analysis showed that miR-206-3p was downregulated in exosomes from shGATA4 OMSCs. Moreover, the transcriptional activity of miR-206-3p was directly regulated by GATA4 in OMSCs. We further demonstrated that miR-206-3p played a key role in the regulation of orofacial bone development by directly targeting bone morphogenetic protein-3 (Bmp3) and nuclear factor of activated T -cells, cytoplasmic 1 (NFATc1). OMExos and agomiR-206-3p enhanced bone mass in Wnt1-cre;Gata4fl/fl mice by augmenting trabecular bone structure and decreasing osteoclast numbers. Conclusion: Our findings confirm that miR-206-3p is an important downstream factor of GATA4 that regulates the functions of OMSCs and osteoclasts. These results demonstrate the efficiency of OMExos and microRNA agomirs in promoting bone regeneration, which provide an ideal therapeutic tool for orofacial bone deformities in the future.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , MicroARNs/genética , Osteogénesis/genética , Animales , Desarrollo Óseo/genética , Desarrollo Óseo/fisiología , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Exosomas/genética , Factor de Transcripción GATA4/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología
5.
Regul Toxicol Pharmacol ; 49(2): 101-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17869397

RESUMEN

To study the protective effect and possible mechanism of Porphyra yezoensis polysaccharide (PYP) in hepatotoxicity mice, acute liver injury was successfully induced by injecting 0.2% carbon tetrachloride (CCl(4)) intraperitoneally. Levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and liver homogenate, content of malondialdehyde (MDA), activities of total superoxide dismutase (T-SOD) in liver were measured by biochemical methods. Liver index was calculated and pathological changes of the liver tissue were observed microscopically. PYP was found to significantly decrease the activities of ALT and AST (P<0.05), to remarkably lower the liver indexes and MDA level in hepatical tissues in mice (P<0.05), and to upregulated the lower T-SOD level in liver homogenate (P<0.01). Furthermore, histologic examination showed that PYP could attenuate and the extent of necrosis, reduce the immigration of inflammatory cells. PYP plays a protective action against hepatotoxicity induced by CCl(4) in mice, and its mechanisms may be related to free radical scavenging, increasing SOD activities and anti-lipid peroxide.


Asunto(s)
Antioxidantes/farmacología , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Polisacáridos/farmacología , Porphyra/química , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quimioprevención , Relación Dosis-Respuesta a Droga , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos , Necrosis/inducido químicamente , Necrosis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA