Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3251-3254, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824376

RESUMEN

Herein, by ball milling CsPb(Br/I)3 quantum dot glass powder with Sr2MgSi2O7:Eu2+, Dy3+ phosphor, multicolor tunable long persistent luminescence (LPL) in inorganic composites with more than 700 min attenuation time can be obtained via a radiation photon reabsorption process. Attractively, the wide color gamut of LPL spectra overlaps the National Television System Committee space 74%. Notably, the luminescence intensity remains stable when the inorganic composites are composed with UV light for 100 h. Finally, practical anticounterfeiting application is successfully realized based on the prepared LPL inorganic composites. This work provides a new, to the best of our knowledge, perspective to achieve polychromatic adjustment of LPL.

2.
Opt Express ; 30(18): 32110-32118, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242279

RESUMEN

Yellow-orange lights, valuable in photodynamic therapies, spectroscopy, and optogenetics, are limited by the narrow bandwidth and bulky setup via the conventional Raman or optical parametric oscillation processes. Moreover, flatness in the broad-band spectrum is also important for the aforementioned applications with extended functions. In this paper, by carefully designing grating-periods of a step-chirped PPMgLN ridge waveguide for sum frequency generation (SFG), we report a compact broad-band yellow-orange light with bandwidth of 5.6 nm and an un-reported flatness (<1.5 dB). Correspondingly, the optical conversion efficiency is 232.08%/W, which is the best SFG efficiency for PPMgLN at the yellow-orange region, to the best of our knowledge. The results could also be adopted for other broad-band SFG process toward the vis-infrared region in an integrated structure.

3.
RSC Adv ; 12(2): 777-784, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35425150

RESUMEN

Hypochlorous acid (HClO) is a special kind of reactive oxygen species, which plays an important role in resisting pathogen invasion and maintaining cell redox balance and other physiological processes. In addition, HClO is commonly used in daily life as a bleaching and disinfectant agent. Its excessive use can also lead to death of water animals and serious respiratory and skin diseases in humans. Therefore, it is of great significance to develop a quick and convenient tool for detecting HClO in the environment and organisms. In this paper, we utilize the specific reaction of HClO with dimethylthiocarbamate to develop a novel naphthalene derivative fluorescent probe (BNA-HClO), it was designed and synthesized by using 6-(2-benzothiazolyl)-2-naphthol as the fluorophore and N,N-dimethylthiocarbamate as the recognition group. BNA-HClO shows large fluorescence enhancement (374-fold), high sensitivity (a detection limit of 37.56 nM), rapid response (<30 s), strong anti-interference ability and good specificity in vitro. Based on the outstanding in vitro sensing capability of BNA-HClO, it has been successfully used to detect spiked HClO in tap water, medical wastewater and fetal bovine serum with good recovery. BNA-HClO has also been successfully used as a portable test strip for the in situ semi-quantitative detection of HClO in tap water solutions. In addition, BNA-HClO can successfully enable the detection and imaging of exogenous and endogenous HClO in living cells. This work provides a simple and effective tool for the detection and imaging of HClO in environmental and biological systems, and provides some theoretical guidance for future exploration of biological and pathological studies related to HClO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA