Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 194: 106795, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019122

RESUMEN

Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.

2.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084800

RESUMEN

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Asunto(s)
Antenas de Artrópodos , Proteínas de Insectos , Receptores Odorantes , Spodoptera , Compuestos Orgánicos Volátiles , Animales , Spodoptera/efectos de los fármacos , Masculino , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Antenas de Artrópodos/metabolismo , Hexanoles/farmacología , Hexanoles/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Benzaldehídos
3.
Clin Oral Investig ; 28(4): 219, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492123

RESUMEN

OBJECTIVES: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Ratas , Animales , Osteogénesis/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ligamento Periodontal , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/genética , Células Madre , Células Cultivadas
4.
Int Wound J ; 21(3): e14804, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38385817

RESUMEN

The process of wound healing in the dental pulp is characterized by intricate interplay of signalling cascades, cellular responses, and extracellular matrix (ECM). The objective of this research was to examine the intricate interaction between signalling cascades, cellular responses, and extracellular matrix (ECM) dynamics that comprise the wound healing process of dental pulp. We conducted a controlled laboratory analysis of transcriptomic landscape of dental pulp tissues, including both healthy and inflamed samples, utilizing single-cell RNA sequencing. We identified significant change in cellular composition under carious conditions by analysing samples from 50 patients. Specifically, the proportion of immune cells increased from 25% to 40%, while the proportion of fibroblasts decreased from 20% to 10%. A transition towards ECM remodelling and fibrosis was indicated by this change. In addition, substantial increase inexpression of critical genes including COL1A1, FN1, IL-1B, IL-6 and TNC was detected, indicating that the extracellular matrix (ECM) was actively remodelled and that a robust inflammatory response was present, both of which are vital for tissue repair. Increased cell-cell interactions among B cells, plasma cells, macrophages and MSCs, and fibroblasts were highlighted in our study, demonstrating the intricate cellular dynamics that occur in response to dental pulp injury. The knowledge gained regarding the cellular and molecular processes underlying pulp wound healing contributed to the advancement of knowledge regarding pulp pathology and regeneration. Moreover, it established a foundation for creation of targeted therapeutic interventions that seek to maximize pulp repair and regeneration. This study represented noteworthy achievement in the field of dental surgery, establishing a solid groundwork for subsequent investigations into regenerative medicine, wound healing, and dental tissue restoration.


Asunto(s)
Pulpa Dental , Perfilación de la Expresión Génica , Humanos , Estado de Salud , Fibroblastos , Análisis de Secuencia de ARN
5.
ISA Trans ; 148: 24-31, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514286

RESUMEN

This paper addresses the automatic berthing of a maritime autonomous surface ship operating in a confined water environment subject to static obstacles, dynamic obstacles, thruster constraints, and space constraints due to shorelines. A safety-certified active disturbance rejection control (ADRC) method is proposed for achieving the automatic berthing task of an MASS in the presence of model uncertainties and ocean disturbances. An extended state observer (ESO) based on a second-order robust exact differentiator (RED) is employed to estimate an extended state vector consisting of internal model uncertainties and external ocean disturbances. With the aid of the RED-based ESO, a nominal ADRC law is designed to achieve the position and heading stabilization. To avoid collisions with static obstacles, dynamic obstacles, and shorelines, input-to-state safe high-order control barrier functions are used to guarantee safety. Optimized control signals are obtained based on a constrained quadratic programming (QP) problem within safety constraints. In order to translate the control signals into the individual thruster command, a constrained QP problem is further used to search for optimized commands in real time. It is proven that the closed-loop automatic berthing system is input-to-state stable. By using the proposed method, the MASS is able to reach the desired position and heading with collision avoidance. Simulation results verify the effectiveness of the proposed safety-certified ADRC method for automatic berthing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA