Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Small ; : e2400064, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530072

RESUMEN

Achieving high gas selectivity is challenging when dealing with gas pairs of similar size and physiochemical properties. The "molecular trapdoor" mechanism discovered in zeolites holds promise for highly selective gas adsorption separation but faces limitations like constrained pore volume and slow adsorption kinetics. To address these challenges, for the first time, a flexible metal-organic framework (MOF) featuring 1D channels and functioning as a "molecular trapdoor" material is intoduced. Extra-framework anions act as "gate-keeping" groups at the narrowest points of channels, permitting gas admissions via gate opening induced by thermal/pressure stimuli and guest interactions. Different guest molecules induce varied energy barriers for anion movement, enabling gas separation based on distinct threshold temperatures for gas admission. The flexible framework of Pytpy MOFs, featuring swelling structure with rotatable pyridine rings, facilitates faster gas adsorption than zeolite. Analyzing anion properties of Pytpy MOFs reveals a guiding principle for selecting anions to tailor threshold gas admission. This study not only overcomes the kinetic limitations related to gas admission in the "molecular trapdoor" zeolites but also underscores the potential of developing MOFs as molecular trapdoor adsorbents, providing valuable insights for designing ionic MOFs tailored to diverse gas separation applications.

2.
Small ; : e2400252, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461522

RESUMEN

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45 MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6 ] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6 ] octahedra. This distortion compresses the [MnO6 ] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+ /Mn4+ is balanced by [CoO6 ] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45 Mn0.9 Co0.05 Mo0.05 O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1 . Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

3.
J Synchrotron Radiat ; 30(Pt 2): 327-339, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891846

RESUMEN

This study describes the capabilities and limitations of carrying out total scattering experiments on the Powder Diffraction (PD) beamline at the Australian Synchrotron, ANSTO. A maximum instrument momentum transfer of 19 Å-1 can be achieved if the data are collected at 21 keV. The results detail how the pair distribution function (PDF) is affected by Qmax, absorption and counting time duration at the PD beamline, and refined structural parameters exemplify how the PDF is affected by these parameters. There are considerations when performing total scattering experiments at the PD beamline, including (1) samples need to be stable during data collection, (2) highly absorbing samples with a µR > 1 always require dilution and (3) only correlation length differences >0.35 Šmay be resolved. A case study comparing the PDF atom-atom correlation lengths with EXAFS-derived radial distances of Ni and Pt nanocrystals is also presented, which shows good agreement between the two techniques. The results here can be used as a guide for researchers considering total scattering experiments at the PD beamline or similarly setup beamlines.

4.
Nano Lett ; 22(3): 1302-1310, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089723

RESUMEN

For practical sodium-ion batteries, both high electrochemical performance and cost efficiency of the electrode materials are considered as two key parameters. Prussian blue analogues (PBAs) are broadly recognized as promising cathode materials due to their low cost, high theoretical capacity, and cycling stability, although they suffer from low-crystallinity-induced performance deterioration. Herein, a facile "ice-assisted" strategy is presented to prepare highly crystallized PBAs without any additives. By suppressing structure defects, the cathode exhibits a high capacity of 123 mAh g-1 with initial Coulombic efficiency of 87.2%, a long cycling lifespan of 3000 cycles, and significantly enhanced high/low temperature performance and calendar life. Remarkably, the low structure distortion and high sodium diffusion coefficient have been identified via in situ synchrotron powder diffraction and first-principles calculations, while its thermal stability has been analyzed by in situ heated X-ray powder diffraction. We believe the results could pave the way to the low-cost and large-scale application of PBAs in all-climate sodium-ion batteries.

5.
Angew Chem Int Ed Engl ; 62(22): e202301681, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975137

RESUMEN

Improving kinetics of solid-state sulfide conversion in sulfur cathodes can enhance sulfur utilization of metal-sulfur batteries. However, fundamental understanding of the solid-state conversion remains to be achieved. Here, taking potassium-sulfur batteries as a model system, we for the first time report the reducing overpotential of solid-state sulfide conversion via the meta-stable S3 2- intermediates on transition metal single-atom sulfur hosts. The catalytic sulfur host containing Cu single atoms demonstrates high capacities of 1595 and 1226 mAh g-1 at current densities of 335 and 1675 mA g-1 , respectively, with stable Coulombic efficiency of ≈100 %. Combined spectroscopic characterizations and theoretical computations reveal that the relatively weak Cu-S bonding results in low overpotential of solid-state sulfide conversion and high sulfur utilization. The elucidation of solid-state sulfide conversion mechanism can direct the exploration of highly efficient metal-sulfur batteries.

6.
Angew Chem Int Ed Engl ; 62(6): e202215865, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470847

RESUMEN

Sodium-ion batteries (SIBs) with fast-charge capability and long lifespan could be applied in various sustainable energy storage systems, from personal devices to grid storage. Inspired by the disordered Rubik's cube, here, we report that the high-entropy (HE) concept can lead to a very substantial improvement in the sodium storage properties of hexacyanoferrate (HCF). An example of HE-HCF has been synthesized as a proof of concept, which has achieved impressive cycling stability over 50 000 cycles and an outstanding fast-charging capability up to 75 C. Remarkable air stability and all-climate performance are observed. Its quasi-zero-strain reaction mechanism and high sodium diffusion coefficient have been measured and analyzed by multiple in situ techniques and density functional theory calculations. This strategy provides new insights into the development of advanced electrodes and provides the opportunity to tune electrochemical performance by tailoring the atomic composition.

7.
Angew Chem Int Ed Engl ; 61(39): e202208534, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35927219

RESUMEN

To mitigate flooding associated with the gas diffusion layer (GDL) during electroreduction of CO2 , we report a hydrophobicity-graded hydrophobic GDL (HGGDL). Coating uniformly dispersed polytetrafluoroethylene (PTFE) binders on the carbon fiber skeleton of a hydrophilic GDL uniformizes the hydrophobicity of the GDL and also alleviates the gas blockage of pore channels. Further adherence of the PTFE macroporous layer (PMPL) to one side of the hydrophobic carbon fiber skeleton was aided by sintering. The introduced PMPL shows an appropriate pore size and enhanced hydrophobicity. As a result, the HGGDL offers spatial control of the hydrophobicity and hence water and gas transport over the GDL. Using a nickel-single-atom catalyst, the resulting HGGDL electrode provided a CO faradaic efficiency of over 83 % at a constant current density of 75 mA cm-2 for 103 h operation in a membrane electrode assembly, which is more than 16 times that achieved with a commercial GDL.

8.
Angew Chem Int Ed Engl ; 61(13): e202117809, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35043530

RESUMEN

Herein, we report a series of CuPd catalysts for electrochemical hydrogenation (ECH) of furfural to 2-methylfuran (MF or FurCH3 where Fur=furyl) in aqueous 0.1 M acetic acid (pH 2.9). The highest faradaic efficiency (FE) for MF reached 75 % at -0.58 V vs. reversible hydrogen electrode with an average partial current density of 4.5 mA cm-2 . In situ surface-enhanced Raman spectroscopic and kinetic isotopic experiments suggested that electrogenerated adsorbed hydrogen (Hads ) was involved in the reaction and incorporation of Pd enhanced the surface coverage of Hads and optimized the adsorption pattern of furfural, leading to a higher FE for MF. Density functional theory calculations revealed that Pd incorporation reduced the energy barrier for the hydrogenation of FurCH2 * to FurCH3 *. Our study demonstrates that catalyst surface structure/composition plays a crucial role in determining the selectivity in ECH and provides a new strategy for designing advanced catalysts for ECH of bio-derived oxygenates.

9.
J Am Chem Soc ; 143(41): 16902-16907, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623812

RESUMEN

Potassium-sulfur batteries hold practical promise for next-generation batteries because of their high theoretical gravimetric energy density and low cost. However, significant impediments are the sluggish K2S oxidation kinetics and a lack of atomic-level understanding of K2S oxidation. Here, for the first time, we report the catalytic oxidation of K2S on a sulfur host with Co single atoms immobilized on nitrogen-doped carbon. On the basis of combined spectroscopic characterizations, electrochemical evaluation, and theoretical computations, we show a synergistic effect of dynamic Co-S and N-K interactions to catalyze K2S oxidation. The resultant potassium-sulfur battery exhibited high capacities of 773 and 535 mAh g-1 under high current densities of 1 and 2 C, respectively. These findings provide atomic-scale insights for the rational design of highly efficient sulfur hosts.

10.
J Am Chem Soc ; 143(37): 15195-15204, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516739

RESUMEN

Nitrogen (N2) rejection from methane (CH4) is the most challenging step in natural gas processing because of the close similarity of their physical-chemical properties. For decades, efforts to find a functioning material that can selectively discriminate N2 had little outcome. Here, we report a molecular trapdoor zeolite K-ZSM-25 that has the largest unit cell among all zeolites, with the ability to capture N2 in favor of CH4 with a selectivity as high as 34. This zeolite was found to show a temperature-regulated gas adsorption wherein gas molecules' accessibility to the internal pores of the crystal is determined by the effect of the gas-cation interaction on the thermal oscillation of the "door-keeping" cation. N2 and CH4 molecules were differentiated by different admission-trigger temperatures. A mild working temperature range of 240-300 K was determined wherein N2 gas molecules were able to access the internal pores of K-ZSM-25 while CH4 was rejected. As confirmed by experimental, molecular dynamic, and ab initio density functional theory studies, the outstanding N2/CH4 selectivity is achieved within a specific temperature range where the thermal oscillation of door-blocking K+ provides enough space only for the relatively smaller molecule (N2) to diffuse into and through the zeolite supercages. Such temperature-regulated adsorption of the K-ZSM-25 trapdoor zeolite opens up a new approach for rejecting N2 from CH4 in the gas industry without deploying energy-intensive cryogenic distillation around 100 K.

11.
Environ Res ; 197: 111026, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744265

RESUMEN

Here we developed the functionalized biochar as low-cost and heavy metal-free photocatalysts via a facile iodine doping method, which exhibit efficient adsorption and visible-light-driven photocatalytic degradation of representative organic pollutants, phenol and tetracycline. On one hand, iodine doping elevates the adsorption via creating extra pores, e.g., the adsorbed amounts of phenol by iodine-doped WSP and OSR biochar are increased by 161.8% and 146.3%, respectively, which in turn facilitates the photocatalytic oxidation of the adsorbed pollutants. On the other hand, iodine doping leads to the strong photo-induced excitation and remarkably reduced charge carrier transfer resistance, boosting the photocatalytic activity of iodine-doped biochar by more than 20 orders towards organic pollutants (e.g., phenol) degradation. The systematic analysis of reactive species reveals the active roles of O2-, H2O2, 1O2, OH, electrons, and holes in photocatalytic process and identifies O2- to be the major contributor. This work affords a facile approach to generating porous and visible-light-driven photocatalyst from biomass for efficient adsorbing and degrading organic pollutants, opening up an avenue to turn biowaste into biomaterials for sustainable environmental remediation.


Asunto(s)
Doping en los Deportes , Contaminantes Ambientales , Yodo , Adsorción , Catálisis , Carbón Orgánico , Peróxido de Hidrógeno , Luz
12.
Angew Chem Int Ed Engl ; 60(9): 4774-4781, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33244843

RESUMEN

It is a challenge to obtain ABO3 perovskite oxides with favorable crystal phase and well-defined porous structure via existing approaches. Here, we design an effective and versatile strategy to construct mesoporous ABO3 perovskite oxides with functionalized nanocrystal frameworks and abundant oxygen vacancy sites via a resol-assisted cationic coordinative co-assembly approach. The as-prepared oxygen vacancy-rich mesoporous LaMnO3 as heterogeneous catalyst exhibits remarkable catalytic activity and stability for hydrogenation of furfural to furfuryl alcohol, including over 99 % conversion and 96 % selectivity. Combined with density functional theory calculation, the catalytic mechanism is elucidated, revealing that porous LaMnO3 nanocrystal framework is conducive to expose oxygen deficiency sites, which can facilitate the interaction between catalyst surface and catalytic substrate, leading to lower barrier in hydrogenation process.

13.
Small ; 16(35): e2000698, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32776405

RESUMEN

The realizing of high-performance rechargeable aqueous zinc-ion batteries (ZIBs) with high energy density and long cycling life is promising but still challenging due to the lack of suitable layered cathode materials. The work reports the excellent zinc-ion storage performance as-observed in few-layered ultrathin VSe2 nanosheets with a two-step Zn2+ intercalation/de-intercalation mechanism verified by ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterizations. The VSe2 nanosheets exhibit a discharge plateau at 1.0-0.7 V, a specific capacity of 131.8 mAh g-1 (at 0.1 A g-1 ), and a high energy density of 107.3 Wh kg-1 (at a power density of 81.2 W kg-1 ). More importantly, outstanding cycle stability (capacity retention of 80.8% after 500 cycles) without any activation process is achieved. Such a prominent cyclic stability should be attributed to its fast Zn2+ diffusion kinetics (DZn 2+  ≈ 10-8 cm-2 s-1 ) and robust structural/crystalline stability. Density functional theory (DFT) calculation further reveals a strong metallic characteristic and optimal zinc-ion diffusion pathway with a hopping energy barrier of 0.91 eV. The present finding implies that 2D ultrathin VSe2 is a very promising cathode material in ZIBs with remarkable battery performance superior to other layered transitional metal dichalcogenides.

14.
J Synchrotron Radiat ; 27(Pt 1): 212-216, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868754

RESUMEN

The structure and thermal expansion of the astronomical molecule propionitrile have been determined from 100 to 150 K using synchrotron powder X-ray diffraction. This temperature range correlates with the conditions of Titan's lower stratosphere, and near surface, where propionitrile is thought to accumulate and condense into pure and mixed-nitrile phases. Propionitrile was determined to crystallize in space group, Pnma (No. 62), with unit cell a = 7.56183 (16) Å, b = 6.59134 (14) Å, c = 7.23629 (14), volume = 360.675 (13) Å3 at 100 K. The thermal expansion was found to be highly anisotropic with an eightfold increase in expansion between the c and b axes. These data will prove crucial in the computational modelling of propionitrile-ice systems in outer Solar System environments, allowing us to simulate and assign vibrational peaks in the infrared spectra for future use in planetary astronomy.

15.
Environ Sci Technol ; 54(1): 537-549, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31830789

RESUMEN

A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2- and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.


Asunto(s)
Molibdeno , Bacterias , Brassica napus , Catálisis , Luz , Polen
16.
Angew Chem Int Ed Engl ; 59(44): 19680-19683, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32697412

RESUMEN

Mitigating ambient nitrogen dioxide (NO2 ) pollution via selective adsorption on porous materials is a promising approach to tackle such an increasingly pressing environmental health issue. However, very few porous adsorbents have sufficiently high NO2 adsorption capacity and good regenerability simultaneously. Here we attempt to address this challenge by developing π-backbonding adsorbents in the transition metal (TM) incorporated porphyrin metal-organic frameworks (PMOFs). Breakthrough experiments show that PMOFs with inserted TMs achieve appreciable NO2 capacity and good regenerability. Combined in situ DRIFTS, synchrotron powder XRD, and DFT calculations reveal the adsorption mechanism: NO2 partially transforms to N2 O4 and interacts with transition metal via π-backbonding and Al-node via hydrogen bonding. This work affords new insights for designing next-generation adsorbents for ambient NO2 removal and presents PMOFs as a platform to tailor π-backbonding adsorbents.

17.
Angew Chem Int Ed Engl ; 59(31): 13051-13056, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32343468

RESUMEN

1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal-organic framework (MOF) sub-nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light-gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9-12 Šcavities connected by ca. 6 Štriangular windows work as angstrom-scale ion channels, while confined AZO within the MOF cavities function as light-driven molecular gates to efficiently regulate the ion flux. The AZO-MOFSNCs show good cyclic gating performance and high on-off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO-modified nanochannels (1.3-1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.

18.
Angew Chem Int Ed Engl ; 59(29): 12076-12083, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32249496

RESUMEN

Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3 Ti0.5 V0.5 (PO3 )3 N as a new cathode material for sodium ion batteries. Both the Ti3+ /Ti4+ and V3+ /V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5 V0.5 (PO3 )3 N is also a stable phase according to formation energy calculations.

19.
Angew Chem Int Ed Engl ; 59(13): 5159-5164, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-31849145

RESUMEN

Hierarchical hollow CoP and carbon composites were obtained through a facile synthetic method, where carbonization and phosphorization of the precursor were completed within one single step. The composites are composed of hollow CoP@C spheres, which are further made up of CoP nanoparticles with a thin outer carbon layer. Electrochemical performances of the prepared CoP@C composites as anodes for sodium and potassium storage were evaluated and compared. In situ TEM, in situ synchrotron XRD, and DFT calculations were conducted to study the structural evolution and the interaction between Na/K and CoP during cycling processes. Benefiting from the synergistic effect of conductive carbon layer and hierarchical hollow structure, the as-prepared CoP@C composites demonstrate superior sodium and potassium storage capability as anode materials for rechargeable batteries.

20.
Angew Chem Int Ed Engl ; 59(6): 2449-2456, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657087

RESUMEN

Herein, we introduce a 4.0 V class high-voltage cathode material with a newly recognized sodium superionic conductor (NASICON)-type structure with cubic symmetry (space group P21 3), Na3 V(PO3 )3 N. We synthesize an N-doped graphene oxide-wrapped Na3 V(PO3 )3 N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all-climate performance were carefully investigated. A near-zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X-ray diffraction, and the in situ X-ray absorption spectra revealed the V3.2+ /V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high-voltage NASICON-type Na3 V(PO3 )3 N composite is a competitive cathode material for sodium-ion batteries and will receive more attention and studies in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA