Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 96(1): 74-86, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501714

RESUMEN

OBJECTIVE: To determine the association between the preoperative Bioenergetic Health Index (BHI) of platelets and the occurrence of postoperative delirium (POD) in elderly patients. METHODS: Elderly patients scheduled for major abdominal surgery under general anesthesia were included. The presence of POD was assessed within the 3 days after surgery. Seahorse XF analysis and transmission electron microscopy were utilized to evaluate the mitochondrial metabolism and morphology of platelets. RESULTS: A total of 20 out of 162 participants developed POD. Participants with POD showed lower preoperative Mini-Mental State Examination scores and total protein levels, fewer educational years, longer surgery duration, higher mean platelet volume, and lower platelet BHI compared with those without POD. Damaged mitochondria with swollen appearance and distorted cristae was detected in platelets from participants with POD. Preoperative platelet BHI was independently associated with the occurrence of POD after adjusting for age, education, preoperative Mini-Mental State Examination score, preoperative mean platelet volume and total protein levels, surgical type and duration, and lymphocyte counts on the first postoperative day (OR 0.11, 95% CI 0.03-0.37, p < 0.001). The areas under the receiver operating curves for predicting POD were 0.83 (95% CI 0.76-0.88) for platelet BHI. It showed a sensitivity of 85.00% and specificity of 73.24%, with an optimal cutoff value of 1.61. Using a serial combination (mean platelet volume followed by BHI) yielded a sensitivity of 80.00% and specificity of 82.39%. INTERPRETATION: Preoperative platelet BHI was independently associated with the occurrence of POD in elderly patients and has the potential as a screening biomarker for POD risk. ANN NEUROL 2024;96:74-86.


Asunto(s)
Biomarcadores , Plaquetas , Mitocondrias , Complicaciones Posoperatorias , Humanos , Anciano , Masculino , Femenino , Plaquetas/metabolismo , Biomarcadores/sangre , Mitocondrias/metabolismo , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/sangre , Anciano de 80 o más Años , Delirio/sangre , Delirio/diagnóstico , Delirio/etiología
2.
BMC Med ; 22(1): 189, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715017

RESUMEN

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Asunto(s)
Células Endoteliales , Glucosa , Hiperalgesia , Privación de Sueño , Médula Espinal , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Ratones , Glucosa/metabolismo , Células Endoteliales/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Masculino , Privación de Sueño/complicaciones , Glucólisis/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627764

RESUMEN

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Asunto(s)
Disfunción Cognitiva , Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Masculino , Ratones , Disfunción Cognitiva/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Sepsis/patología , Encefalopatía Asociada a la Sepsis/metabolismo , Transducción de Señal
4.
Anesth Analg ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38507554

RESUMEN

BACKGROUND: Neuropathic pain (NP) is a highly challenging condition with complex pathological mechanisms, and the spinal gamma aminobutyric acid A receptor receptor plays a crucial role in its progression. Recent studies have revealed a potential interaction between neuroplastin 65 (NP65) and gamma aminobutyric acid A receptor α2 subunit (GABAAR-α2) on the cell surface. We hypothesize that NP65 is involved in the pathogenesis of NP by regulating the level of GABAAR-α2. METHODS: A chronic constrictive injury (CCI) pain model was established in male Sprague-Dawley rats to verify the change in spinal NP65 expression. Alterations in pain behavior and GABAAR-α2 protein expression were observed after intrathecal injection of NP65 overexpressing adeno-associated virus (AAV) in CCI rats. In vitro investigations on Neuroblastoma 2a cells, the effect of NP65 on GABAAR-α2 expression via the calcineurin-nuclear factor of activated T-cell 4 (CaN-NFATc4) signaling pathway was evaluated by manipulating NP65 expression. RESULTS: The expression level of NP65 protein and mRNA in the CCI group were significantly decreased (P < .05; analysis of variance [ANOVA]). After intrathecal injection of NP65, overexpression of AAV and pain behavior in CCI rats were significantly alleviated, and levels of GABAAR-α2 were upregulated. In vitro experiments verified alterations in the expression of GABAAR-α2, CaN, and phosphorylated NFATc4 on the application of NP65 with plasmid or small interfering RNA, respectively. After the application of the specific CaN inhibitor cyclosporine A (CsA), the changes in NP65 expression did not produce subsequent alterations in the expression of GABAAR-α2, CaN, or phosphorylated NFATc4 proteins. CONCLUSIONS: NP65 modulates the level of GABAAR-α2 through the CaN-NFATc4 signaling pathway, which may serve as the underlying mechanism of NP.

5.
Anesth Analg ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241681

RESUMEN

BACKGROUND: The microglial activation has been implicated in cancer-induced bone pain. Recent studies have revealed that microglia mediate synaptic pruning in the central nervous system, where the cluster of differentiation 47-signal regulatory protein α (CD47-SIRPα) axis creates a "don't eat me" signal and elicits an antiphagocytic effect to protect synapses against elimination. To date, the synaptic phagocytosis in microglia has never been investigated in the murine cancer-induced bone pain model. The present experiments sought to explore whether microglia phagocytize synapses in mice with bone cancer pain as well as the possible mechanisms. METHODS: Male C3H/HeN mice were used to induce bone cancer pain. Minocycline and S-ketamine were injected into D14. The number of spontaneous flinches (NSF) and paw withdrawal mechanical thresholds (PWMT) were measured on D0, D4, D7, D10, D14, D21, and D28. Hematoxylin and eosin staining presented bone lesions. Western blotting examined the Gephyrin, CD47, and SIRPα expression. Flow cytometry evaluated the proportion of SIRPα+ cells in the spine. Immunofluorescence and 3-dimensional reconstruction showed the Gephyrin puncta inside microglial lysosomes. RESULTS: Mice embedded with tumor cells induced persistent spontaneous pain and mechanical hyperalgesia. Hematoxylin and eosin staining revealed bone destruction and tumor infiltration in marrow cavities. Microglia underwent a responsive and proliferative burst (t = -16.831, P < .001). Western blotting manifested lowered Gephyrin expression in the tumor group (D4, D7, D10, D14, D21, and D28: P < .001). Immunofluorescence and 3-dimensional reconstruction showed larger volumes of Gephyrin puncta inside microglial lysosomes (t = -23.273, P < .001; t = -27.997, P < .001). Treatment with minocycline or S-ketamine exhibited pain relief and antiphagocytic effects (t = -6.191, P < .001, t = -7.083, P < .001; t = -20.767, P < .001, t = -17.080, P < .001; t = 11.789, P < .001, t = 16.777, P < .001; t = 8.868, P < .001, t = 21.319, P < .001). Last but not least, the levels of CD47 and SIRPα proteins were downregulated (D10: P = .004, D14, D21, and D28: P < .001; D10, D14, D21, and D28: P < .001). Flow cytometry and immunofluorescence substantiated reduced microglial SIRPα (t = 11.311, P < .001; t = 12.189, P < .001). CONCLUSIONS: Microglia-mediated GABAergic synapse pruning in the spinal cord dorsal horn in bone cancer pain mice, which might be associated with the declined CD47-SIRPα signal. Our research uncovered an innovative mechanism that highlighted microglia-mediated synaptic phagocytosis in a murine cancer-induced bone pain model.

6.
BMC Anesthesiol ; 24(1): 158, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658828

RESUMEN

OBJECTIVE: Frailty poses a crucial risk for postoperative complications in the elderly, with sarcopenia being a key component. The impact of sarcopenia on postoperative outcomes after total hip arthroplasty (THA) is still unclear. This study investigated the potential link between sarcopenia and postoperative outcomes among elderly THA patients. METHODS: Totally 198 older patients were enrolled in this study. Sarcopenia in this group was determined by assessing the skeletal muscle index, which was measured using computed tomography at the 12th thoracic vertebra and analyzed semi-automatically with MATLAB R2020a. Propensity score matching (PSM) was employed to evaluate postoperative complications of grade II and above (POCIIs). RESULTS: The variables balanced using PSM contained age, sex and comorbidities including hypertension, diabetes, hyperlipidemia and COPD. Before PSM, sarcopenic patients with reduced BMI (24.02 ± 0.24 vs. 27.11 ± 0.66, P < 0.001) showed higher POCIIs rates (48.31% vs. 15%, P = 0.009) and more walking-assisted discharge instances (85.96% vs. 60%, P = 0.017) compared with non-sarcopenia patients. After PSM, this group maintained reduced BMI (23.47 ± 0.85 vs. 27.11 ± 0.66, P = 0.002), with increased POCIIs rates (54.41% vs. 15%, P = 0.002) and heightened reliance on walking assistance at discharge (86.96% vs. 60%, P = 0.008). CONCLUSION: Sarcopenia patients exhibited a higher incidence of POCIIs and poorer physical function at discharge. Sarcopenia could serve as a valuable prognostic indicator for elderly patients undergoing elective THA.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Procedimientos Quirúrgicos Electivos , Complicaciones Posoperatorias , Puntaje de Propensión , Sarcopenia , Humanos , Sarcopenia/epidemiología , Masculino , Femenino , Anciano , Complicaciones Posoperatorias/epidemiología , Procedimientos Quirúrgicos Electivos/efectos adversos , Anciano de 80 o más Años , Estudios Retrospectivos
7.
BMC Anesthesiol ; 24(1): 92, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443828

RESUMEN

OBJECTIVE: To study how Pneumoperitoneum under Trendelenburg position for robot-assisted laparoscopic surgery impact the perioperative respiratory parameters, diagrammatic function, etc. METHODS: Patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position and patients undergoing general surgery in the supine position were selected. The subjects were divided into two groups according to the type of surgery: robot-assisted surgery group and general surgery group. ① Respiratory parameters such as lung compliance, oxygenation index, and airway pressure were recorded at 5 min after intubation, 1 and 2 h after pneumoperitoneum. ② Diaphragm excursion (DE) and diaphragm thickening fraction (DTF) were recorded before entering the operating room (T1), immediately after extubation (T2), 10 min after extubation (T3), and upon leaving the postanesthesia care unit (T4). ③ Peripheral venous blood (5 ml) was collected before surgery and 30 min after extubation and was analyzed by enzyme-linked immunosorbent assay to determine the serum concentration of Clara cell secretory protein 16 (CC16) and surfactant protein D (SP-D). RESULT: ① Compared with the general surgery group (N = 42), the robot-assisted surgery group (N = 46) presented a significantly higher airway pressure and lower lung compliance during the surgery(P < 0.001). ② In the robot-assisted surgery group, the DE significantly decreased after surgery (P < 0.001), which persisted until patients were discharged from the PACU (P < 0.001), whereas the DTF only showed a transient decrease postoperatively (P < 0.001) and returned to its preoperative levels at discharge (P = 0.115). In the general surgery group, the DE showed a transient decrease after surgery(P = 0.011) which recovered to the preoperative levels at discharge (P = 1). No significant difference in the DTF was observed among T1, T2, T3, and T4. ③ Both the general and robot-assisted surgery reduced the postoperative serum levels of SP-D (P < 0.05), while the robot-assisted surgery increased the postoperative levels of CC16 (P < 0.001). CONCLUSION: Robot-assisted laparoscopic surgery significantly impairs postoperative diaphragm function, which does not recover to preoperative levels at PACU discharge. Elevated levels of serum CC16 after surgery suggest potential lung injury. The adverse effects may be attributed to the prolonged Trendelenburg position and pneumoperitoneum during laparoscopic surgery.


Asunto(s)
Laparoscopía , Neumoperitoneo , Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Diafragma , Inclinación de Cabeza , Proteína D Asociada a Surfactante Pulmonar , Respiración
8.
Lab Invest ; 103(3): 100002, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925195

RESUMEN

Resistance to hormone therapy leads to a recurrence of estrogen receptor-positive breast cancer. We have demonstrated that the epithelial splicing regulatory protein 1 (ESRP1) significantly affects cell/tumor growth and metabolism and is associated with a poor prognosis in this breast cancer subtype. In this study, we aimed to investigate the ESRP1 protein-messenger RNA (mRNA) interaction in hormone therapy-resistant breast cancer. RNA-binding protein immunoprecipitation (RIP) followed by Clariom D (Applied Biosystems/Thermo Fisher Scientific) transcriptomics microarray (RIP-Chip) was performed to identify mRNA-binding partners of ESRP1. The integration of RIP-Chip and immunoprecipitation-mass spectrometry analyses identified phosphoglycerate dehydrogenase (PHGDH), a key metabolic enzyme, as a binding partner of ESRP1 in hormone-resistant breast cancer. Bioinformatic analysis showed ESRP1 binding to the 5' untranslated region of PHGDH. RNA electrophoresis mobility shift assay and RIP-quantitative reverse transcription-polymerase chain reaction further validated the ESRP1-PHGDH binding. In addition, knockdown of ESRP1 decreased PHGDH mRNA stability significantly, suggesting the posttranscriptional regulation of PHGDH by ESRP1. The presence or absence of ESRP1 levels significantly affected the stability in tamoxifen-resistant LCC2 and fulvestrant-resistant LCC9 cells. PHGDH knockdown in tamoxifen-resistant cells further reduced the oxygen consumption rate (ranging from P = .005 and P = .02), mimicking the effects of ESRP1 knockdown. Glycolytic parameters were also altered (ranging P = .001 and P = .005). ESRP1 levels did not affect the stability of PHGDH in T-47D cells, although knockdown of PHGDH affected the growth of these cells. In conclusion, to our knowledge, this study, for the first time, reports that ESRP1 binds to the 5' untranslated region of PHGDH, increasing its mRNA stability in hormone therapy-resistant estrogen receptor-positive breast cancer. These findings provide evidence for a novel mechanism of action of RNA-binding proteins such as ESRP1. These new insights could assist in developing novel strategies for the treatment of hormone therapy-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Regiones no Traducidas 5' , Tamoxifeno/farmacología , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Hormonas , Línea Celular Tumoral
9.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533081

RESUMEN

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Asunto(s)
Trampas Extracelulares , Lesión Pulmonar , Sepsis , Ratones , Animales , Dinoprostona/metabolismo , Dinoprostona/farmacología , Neutrófilos/metabolismo , Infiltración Neutrófila , Lesión Pulmonar/metabolismo , Cambio de Clase de Inmunoglobulina , Ratones Endogámicos C57BL , Macrófagos , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología
10.
Neurochem Res ; 48(1): 305-314, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36104611

RESUMEN

Sleep deprivation, a common perioperative period health problem, causes ocular discomfort and affects postsurgical pain. However, the mechanism of sleep deprivation-induced increased pain sensitivity is elusive. This study aims to explore the role of ROS in sleep deprivation (SD)-induced hyperalgesia and the underlying mechanism. A 48-h continuous SD was performed prior to the hind paw incision pain modeling in mice. We measured ROS levels, microglial activation, DNA damage and protein levels of iNOS, NLRP3, p-P65 and P65 in mouse spinal dorsal cord. The involvement of ROS in SD-induced prolongation of postsurgical pain was further confirmed by intrathecal injection of ROS inhibitor, phenyl-N-tert-butylnitrone (PBN). Pretreatment of 48-h SD in mice significantly prolonged postsurgical pain recovery, manifesting as lowered paw withdrawal mechanical threshold and paw withdrawal thermal latency. It caused ROS increase and upregulation of iNOS on both Day 1 and 7 in mouse spinal dorsal cord. In addition, upregulation of NLRP3 and p-P65, microglial activation and DNA damage were observed in mice pretreated with 48-h SD prior to the incision. Notably, intrathecal injection of PBN significantly reversed the harmful effects of SD on postsurgical pain recovery, hyperalgesia, microglial activation and DNA damage via the NF-κB signaling pathway. Collectively, ROS increase is responsible for SD-induced hyperalgesia through activating microglial, triggering DNA damage and enhancing NLRP3 inflammasome activity in the spinal dorsal cord.


Asunto(s)
Hiperalgesia , Inflamasomas , Ratas , Ratones , Animales , Hiperalgesia/metabolismo , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Dolor Postoperatorio/metabolismo
11.
Pharmacol Res ; 191: 106773, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068531

RESUMEN

Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.


Asunto(s)
Ataxia Cerebelosa , Ratones , Animales , Ataxia Cerebelosa/inducido químicamente , Células de Purkinje/fisiología , Microglía , Factor de Necrosis Tumoral alfa/farmacología , Cerebelo , Citocinas
12.
Anesth Analg ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38009963

RESUMEN

BACKGROUND: Dysfunction of the blood-spinal cord barrier (BSCB) contributes to the occurrence and development of neuropathic pain (NP). Previous studies revealed that the activation of cyclophilin A (CypA)-metalloproteinase-9 (MMP9) signaling pathway can disrupt the integrity of the blood-brain barrier (BBB) and aggravate neuroinflammatory responses. However, the roles of CypA-MMP9 signaling pathway on BSCB in NP have not been studied. This study aimed to investigate the effect of CypA on the structure and function of the BSCB and pain behaviors in mice with NP. METHODS: We first created the mouse chronic constriction injury (CCI) model, and they were then intraperitoneally injected with the CypA inhibitor cyclosporine A (CsA) or vehicle. Pain behaviors, the structure and function of the BSCB, the involvement of the CypA-MMP9 signaling pathway, microglia activation, and expression levels of proinflammatory factors in mice were examined. RESULTS: CCI mice presented mechanical allodynia and thermal hyperalgesia, impaired permeability of the BSCB, downregulated tight junction proteins, activated CypA-MMP9 signaling pathway, microglia activation, and upregulated proinflammatory factors, which were significantly alleviated by inhibition of CypA. CONCLUSIONS: Collectively, the CypA-MMP9 signaling pathway is responsible for CCI-induced NP in mice by impairing the structure and function of the BSCB, and activating microglia and inflammatory responses.

13.
Nucleic Acids Res ; 49(5): 2848-2858, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33589924

RESUMEN

The ubiquitous RNA-binding protein HuR (ELAVL1) promotes telomerase activity by associating with the telomerase noncoding RNA TERC. However, the role of the neural-specific members HuB, HuC, and HuD (ELAVL2-4) in telomerase activity is unknown. Here, we report that HuB and HuD, but not HuC, repress telomerase activity in human neuroblastoma cells. By associating with AU-rich sequences in TERC, HuB and HuD repressed the assembly of the TERT-TERC core complex. Furthermore, HuB and HuD competed with HuR for binding to TERC and antagonized the function of HuR that was previously shown to enhance telomerase activity to promote cell growth. Our findings reveal a novel mechanism controlling telomerase activity in human neuroblastoma cells that involves a competition between HuR and the related, neural-specific proteins HuB and HuD.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Proteína 2 Similar a ELAV/metabolismo , Proteína 4 Similar a ELAV/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Línea Celular Tumoral , Senescencia Celular , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Humanos
14.
J Cardiothorac Vasc Anesth ; 37(8): 1433-1441, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105852

RESUMEN

OBJECTIVES: To evaluate the efficacy of a single preoperative dose of S-ketamine for chronic postsurgical pain (CPSP) in patients undergoing video-assisted thoracoscopic surgical lung lesion resection (VATS). DESIGN: A prospective randomized, double-blind controlled study. SETTING: Patients were enrolled from March 17, 2021, to November 18, 2021, at a single tertiary academic hospital. PARTICIPANTS: Patients were 18-to-65 years of age and undergoing VATS. INTERVENTIONS: The experiment was divided into an S-ketamine group (0.5 mg/kg intravenous injection before anesthesia induction) or a placebo group (the same volume of normal saline). MEASUREMENTS AND MAIN RESULTS: The primary endpoint was the incidence of CPSP and its neuropathic component. The secondary endpoints included acute postoperative pain, the use of postoperative analgesics, anxiety and sleep quality scores, and the occurrence of adverse effects. There were no significant differences between the 2 groups in the incidences of CPSP, neuropathic pain, acute postoperative pain, and postoperative use of analgesics. The sleep quality scores on the first postoperative day differed significantly between the groups (47.45 ± 27.58 v . 52.97 ± 27.57, p = 0.049), but not the anxiety scores. In addition, adverse effects were similar between the 2 groups. CONCLUSIONS: A single preoperative dose of S-ketamine in patients who underwent VATS had no significant effect on acute and chronic postoperative pain or the consumption of analgesics after surgery. A single preoperative dose of S-ketamine could improve sleep on the first day after surgery, whereas it had no significant effect on anxiety levels.


Asunto(s)
Analgésicos , Cirugía Torácica Asistida por Video , Humanos , Cirugía Torácica Asistida por Video/efectos adversos , Estudios Prospectivos , Dolor Postoperatorio/diagnóstico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología , Pulmón
15.
J Arthroplasty ; 38(9): 1693-1699, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37142067

RESUMEN

BACKGROUND: Chronic postsurgical pain (CPSP) after total knee arthroplasty and total hip arthroplasty (TKA and THA) is an important clinical problem in which many factors play a role. The risk factors for CPSP in elderly individuals are currently unknown. Therefore, our aim was to predict the risk factors for CPSP after TKA and THA and to provide help regarding early screening and interventions for elderly individuals at risk. METHODS: In this prospective observational study, we collected and analyzed 177 TKA patients and 80 THA patients. Based on pain results at the 3-month follow-up, they were divided into the no chronic postsurgical pain and CPSP groups, respectively. The preoperative baseline conditions, including pain intensity (Numerical Rating Scale) and sleep quality (Pittsburgh Sleep Quality Index), as well as intraoperative and postoperative factors, were compared. Factors with P < .05 were included in binary regression analyses to establish prediction models for CPSP after TKA and THA. RESULTS: The prevalence of CPSP was 20.9% after TKA and 7.5% after THA. The preoperative sleep disorders were an independent risk factor of CPSP after TKA, but no risk factors of CPSP after THA were identified. CONCLUSION: This study indicated that the prevalence of CPSP after TKA was significantly higher than after THA, and that preoperative sleep disorders were an independent risk factor for CPSP after TKA, which may aid clinicians in screening people at risk for CPSP for primary prevention.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Dolor Crónico , Humanos , Anciano , Artroplastia de Reemplazo de Cadera/efectos adversos , Dolor Crónico/epidemiología , Dolor Crónico/etiología , Articulación de la Rodilla , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Rodilla/métodos , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/etiología , Dolor Postoperatorio/diagnóstico
16.
Mol Pain ; 18: 17448069221099360, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451875

RESUMEN

Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) ß regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPß in spinal microglia may have critical roles in the development of chronic postsurgical pain. Accordingly, in this study, we used a single prolonged stress (SPS) procedure and plantar incisions to evaluate the roles of C/EBPß in postsurgical pain. Our experiments showed that SPS exposure prolonged mechanical allodynia, increased the expression of C/EBPß and pro-inflammatory cytokines, and potentiated the activation of spinal microglia. Subsequently, microinjection of C/EBPß siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPß promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPß, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPß may be a potential target for disease treatment.


Asunto(s)
Hiperalgesia , Microglía , Regulación de la Expresión Génica , Humanos , Hiperalgesia/metabolismo , Microglía/metabolismo , Dolor Postoperatorio/metabolismo , Médula Espinal
17.
J Neuroinflammation ; 19(1): 64, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255943

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication following anesthesia and surgery. General anesthetic isoflurane has potential neurotoxicity and induces cognitive impairments, but the exact mechanism remains unclear. Astrocytes form interconnected networks in the adult brain through gap junctions (GJs), which primarily comprise connexin 43 (Cx43), and play important roles in brain homeostasis and functions such as memory. However, the role of the GJ-Cx43-mediated astrocytic network in isoflurane-induced cognitive dysfunction has not been defined. METHODS: 4-month-old male C57BL/6 mice were exposure to long-term isoflurane to induce cognitive impairment. To simulate an in vitro isoflurane-induced cognitive dysfunction-like condition, primary mouse astrocytes were subjected to long-term isoflurane exposure. Cognitive function was assessed by Y-maze and fear conditioning tests. Western blot was used to determine the expression levels of different functional configurations of Cx43. The morphology of the GJs-Cx43 was evaluated by immunofluorescence staining. Levels of IL-1ß and IL-6 were examined by ELISA. The ability of GJs-Cx43-mediated intercellular communication was examined by lucifer yellow dye transfer assay. Ethidium bromide uptake assays were used to measure the activity of Cx43 hemichannels. The ultrastructural morphology of astrocyte gap junctions and tripartite synapse were observed by transmission electron microscopy. RESULTS: After long-term isoflurane anesthesia, the GJs formed by Cx43 in the mouse hippocampus and primary mouse astrocytes were significantly reduced, GJs function was impaired, hemichannel activity was enhanced, the levels of IL-1ß and IL-6 were increased, and mice showed significant cognitive impairment. After treatment with the novel GJ-Cx43 enhancer ZP1609, GJ-Cx43-mediated astrocytic network function was enhanced, neuroinflammation was alleviated, and ameliorated cognition dysfunction induced by long-term isoflurane exposure. However, ZP1609 enhances the astrocytic network by promoting Cx43 to form GJs without affecting hemichannel activity. Additionally, our data showed that long-term isoflurane exposure does not alter the structure of tripartite synapse. CONCLUSION: Our results reveal a novel mechanism of the GJ-Cx43-mediated astrocytic network involved in isoflurane-induced neuroinflammation and cognitive impairments, which provides new mechanistic insight into the pathogenesis of POCD and identifies potential targets for its treatment.


Asunto(s)
Disfunción Cognitiva , Isoflurano , Animales , Astrocitos/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Isoflurano/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Neurobiol Learn Mem ; 188: 107584, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032676

RESUMEN

General anesthesia is widely utilized in the clinic for surgical and diagnostic procedures. However, growing evidence suggests that anesthetic exposure may affect cognitive function negatively. Unfortunately, little is known about the underlying mechanisms and efficient prevention and therapeutic strategies for the anesthesia-induced cognitive dysfunction. 5-HT7R, a serotonin receptor family member, is functionally associated with learning and memory. It has recently become a potential therapeutic target in various neurological diseases as its ligands have a wide range of neuropharmacological effects. However, it remains unknown the role of 5-HT7R in the long-term isoflurane anesthesia-induced memory impairment and whether prior activation or blockade of 5-HT7R before anesthesia has modulating effects on this memory impairment. In this study, 5-HT7R selective agonist LP-211 and 5-HT7R selective antagonist SB-269970 were pretreated intraperitoneally to mice before anesthesia; their effects on the cognitive performance of mice were assessed using fear conditioning test and novel object recognition test. Furthermore, the transcriptional level of 5-HT7R in the hippocampus was detected using qRT-PCR, and proteomics was conducted to probe the underlying mechanisms. As a result, long-term exposure to isoflurane anesthesia caused memory impairment and an increase in hippocampal 5-HT7R mRNA expression, which could be attenuated by SB-269970 pretreatment but not LP-211pretreatment. According to the proteomics results, the antiamnestic effect of SB-269970 pretreatment was probably attributed to its action on the gene expression of Slc6a11, Itpka, Arf3, Srcin1, and Epb41l2, and synapse organization in the hippocampus. In conclusion, 5-HT7R is involved in the memory impairment induced by long-term isoflurane anesthesia, and the prior blockade of 5-HT7R with SB-269970 protects the memory impairment. This finding may help to improve the understanding of the long-term isoflurane anesthesia-induced memory impairment and to construct potential preventive and therapeutic strategies for the adverse effects after long-term isoflurane exposure.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Disfunción Cognitiva/inducido químicamente , Isoflurano/administración & dosificación , Memoria/efectos de los fármacos , Animales , Hipocampo/metabolismo , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL , Fenoles/farmacología , Piperazinas/farmacología , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Sulfonamidas/farmacología
19.
Neurochem Res ; 47(11): 3454-3463, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36002639

RESUMEN

Anxiety and depression induced by cancer-related pain disturb quality of life and willingness to survive. As a component of the limbic system, the basolateral amygdala (BLA) is critical for processing negative emotions. The reactive microglial engulfment of synapses may promote depression during adolescence. However, whether microglia phagocytose synapses to mediate cancer pain-induced depression remains unclear. The present study established a bone cancer-pain model to investigate the association between dendritic spine synapses and depressive-like behavior and explore the phagocytic function of microglia in the BLA. We found that tumor-bearing mice experienced postoperative pain-related depression, and their BLAs exhibited reactive microglia, as well as phagocytic synapses. The microglial inhibitor minocycline effectively mitigated depressive behavior, synaptic damage, and the phagocytic function of microglia. Our study implicates microglia-mediated synaptic loss in the BLA may act as the pathological basis of depressive-like behavior in bone cancer pain model.


Asunto(s)
Complejo Nuclear Basolateral , Neoplasias Óseas , Dolor en Cáncer , Animales , Neoplasias Óseas/complicaciones , Ratones , Microglía , Minociclina/farmacología , Calidad de Vida
20.
BMC Gastroenterol ; 22(1): 403, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030214

RESUMEN

BACKGROUND: Systemic pro-inflammatory factors play a critical role in mediating severe postoperative complications (SPCs) in upper abdominal surgery (UAS). The systemic immune-inflammation index (SII) has been identified as a new inflammatory marker in many occasions. The present study aims to determine the association between SII and the occurrence of SPCs after UAS. METHODS: Included in this study were 310 patients with upper abdominal tumors who received UAS and subsequently were transferred to the anesthesia intensive care unit between November 2020 and November 2021 in Nanjing Drum Hospital. SPCs, including postoperative pulmonary complications (PPCs), major adverse cardiac and cardiovascular events, postoperative infections and delirium, were recorded during the hospital stay. The clinical features of the patients with and without SPCs were compared by Student's t-test or Fisher's exact test as appropriate. Risk factors associated with SPC occurrence were evaluated by univariable and multivariable logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was used to establish a cut-off level of SII value to predict SPCs. RESULTS: Of the 310 patients receiving UAS, 103 patients (33.2%) presented at least one SPC, including PPCs (n = 62), adverse cardiovascular events (n = 22), postoperative infections (n = 51), and delirium (n = 5). Both preoperative SII and 1-h postoperative SII in patients with SPCs were significantly higher than those in patients without SPCs. Multivariate analysis showed that 1-h postoperative SII was an independent predictor for SPC occurrence (OR = 1.000, 95% CI 1.000-1.000, P = 0.007), together with postoperative C-reactive protein, postoperative arterial lactate, postoperative oxygenation-index and older age. The ROC curve showed that the optimal cutoff value of 1-h postoperative SII to predict SPCs was 754.6078 × 109/L, with an 88.3% sensitivity and a 29% specificity. Multivariate analysis also confirmed that 1-h postoperative SII > 754.6078 × 109/L was associated with increased SPC occurrence (OR = 2.656, 95% CI 1.311-5.381, P = 0.007). CONCLUSION: Our findings demonstrated an association between the higher level of 1-h postoperative SII and SPCs, suggesting that 1-h postoperative SII, especially categorized 1-h postoperative SII using cutoff value, may be a useful tool for identifying patients at risk of developing SPCs.


Asunto(s)
Enfermedades Cardiovasculares , Delirio , Humanos , Inflamación , Complicaciones Posoperatorias , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA