Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(35): e2401731, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38682736

RESUMEN

Natural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles. By utilizing low frequency ultrasound (40 kHz), the assembly of various natural polyphenolic building blocks is successfully induced, allowing for precise control over the particle formation process. The resulting natural polyphenolic nanoparticles possessed excellent in vitro antioxidative abilities and in vivo therapeutic effects in typical oxidative stress models including wound healing and acute kidney injury. This study opens new avenues for the fabrication of functional materials from naturally occurring building blocks, offering promising prospects for future advancements in this field.


Asunto(s)
Antioxidantes , Nanopartículas , Estrés Oxidativo , Polifenoles , Estrés Oxidativo/efectos de los fármacos , Polifenoles/química , Polifenoles/farmacología , Nanopartículas/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Cicatrización de Heridas/efectos de los fármacos , Humanos , Lesión Renal Aguda , Ratones
2.
Small ; : e2404815, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105462

RESUMEN

The strong anti-inflammatory effect of methylprednisolone (MP) is a necessary treatment for various severe cases including acute spinal cord injury (SCI). However, concerns have been raised regarding adverse effects from MP, which also severely limits its clinical application. Natural polyphenols, due to their rich phenolic hydroxyl chemical properties, can form dynamic structures without additional modification, achieving targeted enrichment and drug release at the disease lesion, making them a highly promising carrier. Considering the clinical application challenges of MP, a natural polyphenolic platform is employed for targeted and efficient delivery of MP, reducing its systemic side effects. Both in vitro and SCI models demonstrated polyphenols have multiple advantages as carriers for delivering MP: (1) Achieved maximum enrichment at the injured site in 2 h post-administration, which met the desires of early treatment for diseases; (2) Traceless release of MP; (3) Reducing its side effects; (4) Endowed treatment system with new antioxidative properties, which is also an aspect that needs to be addressed for diseases treatment. This study highlighted a promising prospect of the robust delivery system based on natural polyphenols can successfully overcome the barrier of MP treatment, providing the possibility for its widespread clinical application.

3.
Biomacromolecules ; 25(4): 2563-2573, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38485470

RESUMEN

In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.


Asunto(s)
Levodopa , Melaninas , Humanos , Melaninas/química , Antioxidantes , Inflamación/tratamiento farmacológico
4.
Biomacromolecules ; 25(4): 2607-2620, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530873

RESUMEN

Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.


Asunto(s)
Nanopartículas , Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Humanos , Riluzol/farmacología , Riluzol/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ácido Glutámico , Inflamación/tratamiento farmacológico , Médula Espinal
5.
Biomacromolecules ; 25(2): 1133-1143, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38226558

RESUMEN

Apart from bacterial growth and endotoxin generation, the excessive production of reactive radicals linked with sepsis also has a substantial impact on triggering an inflammatory response and further treatment failure. Hence, the rational design and fabrication of robust and multifunctional nanoparticles (NPs) present a viable means of overcoming this dilemma. In this study, we used antibiotic polymyxin B (PMB) and antioxidant natural polyphenolic protocatechualdehyde (PCA) to construct robust and multifunctional NPs for sepsis treatment, leveraging the rich chemistries of PCA. The PMB release profile from the NPs demonstrated pH-responsive behavior, which allowed the NPs to exhibit effective bacterial killing and radical scavenging properties. Data from in vitro cells stimulated with H2O2 and lipopolysaccharide (LPS) showed the multifunctionalities of NPs, including intracellular reactive oxygen species (ROS) scavenging, elimination of the bacterial toxin LPS, inhibiting macrophage M1 polarization, and anti-inflammation capabilities. Additionally, in vivo studies further demonstrated that NPs could increase the effectiveness of sepsis treatment by lowering the bacterial survival ratio, the expression of the oxidative marker malondialdehyde (MDA), and the expression of inflammatory cytokine TNF-α. Overall, this work provides ideas of using those robust and multifunctional therapeutic NPs toward enhanced sepsis therapy efficiency.


Asunto(s)
Nanopartículas Multifuncionales , Nanopartículas , Sepsis , Humanos , Lipopolisacáridos/toxicidad , Peróxido de Hidrógeno , Polimixina B/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
Chem Soc Rev ; 51(10): 4175-4198, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35535743

RESUMEN

Polyphenolic materials are a class of fascinating and versatile bioinspired materials for biointerfacial engineering. In particular, due to the presence of active chemical groups, a series of unique physicochemical properties become accessible and tunable of the as-prepared polyphenolic platforms, which could delicately regulate the cell activities via cell-material contact-dependent interactions. More interestingly, polyphenols could also affect the cell behaviors via cell-material contact-independent manner, which arise due to their intrinsically functional characteristics (e.g., antioxidant and photothermal behaviors). As such, a comprehensive understanding on the relationship between material properties and desired biomedical applications, as well as the underlying mechanism at the cellular and molecular level would provide material design principles and accelerate the lab-to-clinic translation of polyphenolic platforms. In this review, we firstly give a brief overview of cell hallmarks governed by surrounding cues, followed by the introduction of polyphenolic material engineering strategies. Subsequently, a detailed discussion on cell-polyphenols contact-dependent interfacial interaction and contact-independent interaction was also carefully provided. Lastly, their biomedical applications were elaborated. We believe that this review could provide guidances for the rational material design of multifunctional polyphenols and extend their application window.


Asunto(s)
Hidrogeles , Polifenoles , Antioxidantes , Hidrogeles/química
7.
Biomacromolecules ; 23(8): 3493-3504, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35861485

RESUMEN

Although adhesive hydrogels have been extensively explored, the development of adhesives with long-term strong adhesion capacity under various harsh environments is still met with profound challenges such as sophisticated preparation, long-term curing, and low bonding strength. Herein, a series of robust adhesive hydrogels have been developed via the polyphenol-epoxy-cross-linking (PEC) reactions between natural polyphenols (extracts) and epoxy glycidyl ethers. The as-prepared natural polyphenolic adhesive hydrogels could induce strong adhesion onto several kinds of typical substrates (i.e., wood, glass, paper, PET, PMMA, and Fe) under both dry and wet conditions based on multi-interactions. Moreover, those natural polyphenolic adhesives exhibited good low-temperature and solvent resistance performances, which could be widely used in different kinds of device repairment (i.e., chemical, petroleum, wood, metal, glass, plastic, rubber, and other industries) under different conditions. This work could provide new opportunities toward natural-inspired robust adhesives in various fields ranging from chemical transportation, industrial manufacturing, architectural design, and marine engineering to daily life.


Asunto(s)
Adhesivos , Adhesivos Tisulares , Hidrogeles , Adherencias Tisulares , Madera
8.
Small ; 17(45): e2102485, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34605169

RESUMEN

The therapeutic potential of nanomaterials toward oxidative damage relevant diseases has attracted great attentions by offering promising advantages compared with conventional antioxidants. Although different kinds of nanoantioxidants have been well developed, the facile fabrication of robust and efficient nanoscavengers is still met with challenges like the use of toxic and high-cost subunits, the involvement of multistep synthetic process, and redundant purification work. Herein, a direct fabrication strategy toward polyphenol nanoparticles with tunable size, excellent biocompatibility, and reactive oxygen species (ROS) scavenging capacities from grape seed via an enzymatic polymerization method is reported. The resulting nanoparticles can efficiently prevent cell damage from ROS and exert promising in vivo antioxidant therapeutic effects on several oxidative stress-related diseases, including accelerating wound healing, inhibiting ulcerative colitis, and regulating the oxidative stress in dry eye disease. This study can stimulate the development of more kinds of low-cost, safe, and efficient biomass-based antioxidative nanomaterials via similar fabrication methodologies.


Asunto(s)
Nanopartículas , Vitis , Antioxidantes , Estrés Oxidativo , Especies Reactivas de Oxígeno
9.
J Nanobiotechnology ; 19(1): 237, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380475

RESUMEN

BACKGROUND: During wound healing, the overproduction of reactive oxygen species (ROS) can break the cellular oxidant/antioxidant balance, which prolongs healing. The wound dressings targeting the mitigation of ROS will be of great advantages for the wound healing. puerarin (PUE) and ferulic acid (FA) are natural compounds derived from herbs that exhibit multiple pharmacological activities, such as antioxidant and anti-inflammatory effects. Polydopamine (PDA) is made from natural dopamine and shows excellent antioxidant function. Therefore, the combination of natural antioxidants into hydrogel dressing is a promising therapy for wound healing. RESULTS: Hydrogel wound dressings have been developed by incorporating PUE or FA via PDA nanoparticles (NPs) into polyethylene glycol diacrylate (PEG-DA) hydrogel. This hydrogel can load natural antioxidant drugs and retain the drug in the gel network for a long period due to the presence of PDA NPs. Under oxidative stress, this hydrogel can improve the activity of superoxide dismutase and glutathione peroxidase and reduce the levels of ROS and malondialdehyde, thus preventing oxidative damage to cells, and then promoting wound healing, tissue regeneration, and collagen accumulation. CONCLUSION: Overall, this triple antioxidant hydrogel accelerates wound healing by alleviating oxidative injury. Our study thus provides a new way about co-delivery of multiple antioxidant natural molecules from herbs via antioxidant nanoparticles for wound healing and skin regeneration.


Asunto(s)
Antioxidantes/farmacología , Ácidos Cumáricos/farmacología , Hidrogeles/farmacología , Indoles/farmacología , Isoflavonas/farmacología , Polímeros/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antioxidantes/química , Vendajes , Ácidos Cumáricos/química , Liberación de Fármacos , Humanos , Hidrogeles/química , Indoles/química , Isoflavonas/química , Ratones , Nanopartículas/química , Ligamento Periodontal , Polietilenglicoles , Polímeros/química , Especies Reactivas de Oxígeno , Piel/efectos de los fármacos , Células Madre
10.
J Sci Food Agric ; 101(4): 1636-1645, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888322

RESUMEN

BACKGROUND: The growing consumer demand for healthy products has encouraged the development of low-salt meat products. In this study, to develop low-salt restructured tilapia (Oreochromis mossambicus) meat products, citric acid was used to improve the properties of restructured tilapia products. RESULTS: In comparison with control restructured fish products (RP) and surimi products (SP), 0.2% citric acid-treated restructured fish products (RPC) and surimi products (SPC) showed a significant decrease in expressible water and water activity and a remarkable increase in whiteness, dry matter, hardness, chewiness, gumminess, and acceptability. Mechanistic studies suggested that citric acid significantly changed the content of total protein and myofibrillar proteins and promoted degradation of heavy myosin chains. Fourier-transform infrared and Raman spectra revealed the citric acid-mediated alteration in the peak intensities of amide I and amide II bands, which changed the secondary structures of RPC and SPC. CONCLUSION: It is feasible to prepare low-salt restructured tilapia meat products using citric acid, which offers a means of using muscle by-products and exploiting new functional products with an added commercial value. © 2020 Society of Chemical Industry.


Asunto(s)
Ácido Cítrico/análisis , Productos Pesqueros/análisis , Proteínas de Peces/química , Cloruro de Sodio/análisis , Animales , Manipulación de Alimentos , Dureza , Humanos , Gusto , Tilapia
11.
Adv Mater ; 36(3): e2308393, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010256

RESUMEN

The abnormal amyloid-ß accumulation is essential and obbligato in Alzheimer's disease pathogenesis and natural polyphenols exhibit great potential as amyloid aggregation inhibitors. However, the poor metabolic stability, low bioavailability, and weak blood-brain barrier crossing ability of natural polyphenol molecules fail to meet clinical needs. Here, a universal protocol to prepare natural polyphenolic nanodots is developed by heating in aqueous solution without unacceptable additives. The nanodots are able to not only inhibit amyloid-ß fibrillization and trigger the fibril disaggregation, but mitigate the amyloid-ß-plaque-induced cascade impairments including normalizing oxidative microenvironment, altering microglial polarization, and rescuing neuronal death and synaptic loss, which results in significant improvements in recognition and cognition deficits in transgenic mice. More importantly, natural polyphenolic nanodots possess stronger antiamyloidogenic performance compared with small molecule, as well as penetrate the blood-brain barrier. The excellent biocompatibility further guarantees the potential of natural polyphenolic nanodots for clinical applications. It is expected that natural polyphenolic nanodots provide an attractive paradigm to support the development of the therapeutics for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Barrera Hematoencefálica/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo
12.
J Biomater Appl ; 39(5): 409-420, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39152927

RESUMEN

Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.


Asunto(s)
Regeneración Ósea , Cerámica , Cerámica/química , Regeneración Ósea/efectos de los fármacos , Humanos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Animales , Sustitutos de Huesos/química
13.
Sci Rep ; 14(1): 1023, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200230

RESUMEN

Using three-dimensional (3D) printing technology to make the porous tantalum plate and modify its surface. The physicochemical properties, cytocompatibility, antioxidant capacity, and histocompatibility of the modified materials were evaluated to prepare for the repair of craniomaxillofacial bone defects. The porous tantalum plates were 3D printed by selective laser melting technology. Tantalum plates were surface modified with a metal polyphenol network. The surface-modified plates were analyzed for cytocompatibility using thiazolyl blue tetrazolium bromide and live/dead cell staining. The antioxidant capacity of the surface-modified plates was assessed by measuring the levels of intracellular reactive oxygen species, reduced glutathione, superoxide dismutase, and malondialdehyde. The histocompatibility of the plates was evaluated by animal experiments. The results obtained that the tantalum plates with uniform small pores exhibited a high mechanical strength. The surface-modified plates had much better hydrophilicity. In vitro cell experiments showed that the surface-modified plates had higher cytocompatibility and antioxidant capacity than blank tantalum plates. Through subcutaneous implantation in rabbits, the surface-modified plates demonstrated good histocompatibility. Hence, surface-modified tantalum plates had the potential to be used as an implant material for the treatment of craniomaxillofacial bone defects.


Asunto(s)
Experimentación Animal , Lagomorpha , Animales , Conejos , Antioxidantes , Tantalio , Placas Óseas , Polifenoles
14.
Regen Biomater ; 11: rbae058, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854682

RESUMEN

Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.

15.
Mater Horiz ; 11(16): 3721-3746, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-38894682

RESUMEN

Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Especies Reactivas de Oxígeno , Hidrogeles/química , Especies Reactivas de Oxígeno/metabolismo , Humanos , Materiales Biocompatibles/química , Estrés Oxidativo/efectos de los fármacos , Animales , Ingeniería de Tejidos/métodos
16.
J Mater Chem B ; 12(25): 6146-6154, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38842181

RESUMEN

Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.


Asunto(s)
Irinotecán , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Irinotecán/química , Irinotecán/farmacología , Humanos , Animales , Ratones , Isomerismo , Proliferación Celular/efectos de los fármacos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Ratones Endogámicos BALB C , Tamaño de la Partícula , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/farmacología , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Polietilenglicoles/química , Camptotecina/química , Camptotecina/farmacología , Camptotecina/análogos & derivados , Ratones Desnudos
17.
ACS Appl Mater Interfaces ; 16(17): 22493-22503, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647220

RESUMEN

Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.


Asunto(s)
Dihidroxifenilalanina/análogos & derivados , Indoles , Levodopa , Melaninas , Nanopartículas , Compuestos de Amonio Cuaternario , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Nanopartículas/química , Melaninas/química , Animales , Ratones , Levodopa/química , Terapia Fototérmica , Humanos , Línea Celular Tumoral , Polímeros/química , Polímeros/síntesis química , Polímeros/farmacología
18.
Mater Horiz ; 11(10): 2438-2448, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441227

RESUMEN

Mussel-inspired polydopamine (PDA) coatings have gained significant attention in various fields, including biomedicine, energy, detection, and UV protection, owing to their versatile and promising properties. Among these properties, UV shielding stands out as a key feature of PDA coatings. Nevertheless, the current methods for tuning the UV-shielding properties of PDA coatings are quite limited, and only rely on thickness adjustment, which might involve additional issues like color and visible light transmittance to the coating layer. In this study, we propose a facile and modular approach to enhance the UV absorption of PDA coatings by incorporating thiol-heterocycle (TH) derivatives. Both pre- and post-modification strategies can effectively impede the formation of conjugated structures within PDA, leading to enhanced UV absorption within the PDA layers. More importantly, these strategies can improve the UV absorption of PDA coatings while reducing the visible light absorption. Furthermore, this method enabled efficient regulation of the UV absorption of PDA coatings by altering the ring type (benzene ring or pyridine ring) and substituent on the ring (methoxyl group or hydrogen atom). These PDA coatings with enhanced UV absorption demonstrate great promise for applications in UV protection, antibacterial activity, wound healing and dye degradation.

19.
Adv Sci (Weinh) ; 11(16): e2310012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359060

RESUMEN

Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.


Asunto(s)
Polifenoles , Piel , Polifenoles/farmacología , Animales , Ratones , Piel/efectos de los fármacos , Piel/metabolismo , Nanopartículas/química , Zanthoxylum/química , Apoptosis/efectos de los fármacos , Extractos Vegetales/farmacología , Modelos Animales de Enfermedad , Humanos
20.
Biomater Sci ; 12(9): 2282-2291, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38415775

RESUMEN

Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.


Asunto(s)
Antibacterianos , Polifenoles , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Animales , Ratones , Staphylococcus aureus/efectos de los fármacos , Humanos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA