Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 7(1): e1001262, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253565

RESUMEN

The rat demyelination (dmy) mutation serves as a unique model system to investigate the maintenance of myelin, because it provokes severe myelin breakdown in the central nervous system (CNS) after normal postnatal completion of myelination. Here, we report the molecular characterization of this mutation and discuss the possible pathomechanisms underlying demyelination. By positional cloning, we found that a G-to-A transition, 177 bp downstream of exon 3 of the Mrs2 (MRS2 magnesium homeostasis factor (Saccharomyces cerevisiae)) gene, generated a novel splice acceptor site which resulted in functional inactivation of the mutant allele. Transgenic rescue with wild-type Mrs2-cDNA validated our findings. Mrs2 encodes an essential component of the major Mg²+ influx system in mitochondria of yeast as well as human cells. We showed that the dmy/dmy rats have major mitochondrial deficits with a markedly elevated lactic acid concentration in the cerebrospinal fluid, a 60% reduction in ATP, and increased numbers of mitochondria in the swollen cytoplasm of oligodendrocytes. MRS2-GFP recombinant BAC transgenic rats showed that MRS2 was dominantly expressed in neurons rather than oligodendrocytes and was ultrastructurally observed in the inner membrane of mitochondria. Our observations led to the conclusion that dmy/dmy rats suffer from a mitochondrial disease and that the maintenance of myelin has a different mechanism from its initial production. They also established that Mg²+ homeostasis in CNS mitochondria is essential for the maintenance of myelin.


Asunto(s)
Proteínas de Transporte de Catión/genética , Enfermedades Desmielinizantes/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Animales , Animales Modificados Genéticamente , Proteínas de Transporte de Catión/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Microscopía Electrónica , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Fenotipo , Sitios de Empalme de ARN , Ratas
2.
Nat Genet ; 37(8): 803-5, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025116

RESUMEN

The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.


Asunto(s)
Dentinogénesis Imperfecta/genética , Eliminación de Gen , Osteogénesis Imperfecta/genética , Animales , Dentinogénesis Imperfecta/enzimología , Ratones , Ratones Mutantes , Mutación , Osteogénesis Imperfecta/enzimología , Esfingomielina Fosfodiesterasa
3.
Mutat Res ; 751-752: 29-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24044941

RESUMEN

Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background.


Asunto(s)
Cadherinas/genética , Pérdida Auditiva/genética , Precursores de Proteínas/genética , Animales , Proteínas Relacionadas con las Cadherinas , Mapeo Cromosómico , Simulación por Computador , Modelos Animales de Enfermedad , Oído Interno/fisiopatología , Pérdida Auditiva/etiología , Intrones , Ratones Endogámicos BALB C , Ratones Mutantes , Mutación
4.
J Hered ; 104(4): 565-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23616478

RESUMEN

G protein-coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.


Asunto(s)
Alelos , Receptores Acoplados a Proteínas G/genética , Animales , Secuencia de Bases , Codón sin Sentido/fisiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Datos de Secuencia Molecular , Filogenia , Receptores Acoplados a Proteínas G/fisiología , Eliminación de Secuencia , Especificidad de la Especie
5.
Nat Genet ; 32(3): 443-7, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12389029

RESUMEN

Mice that are homozygous with respect to the progressive motor neuronopathy (pmn) mutation (chromosome 13) develop a progressive caudio-cranial degeneration of their motor axons from the age of two weeks and die four to six weeks after birth. The mutation is fully penetrant, and expressivity does not depend on the genetic background. Based on its pathological features, the pmn mutation has been considered an excellent model for the autosomal recessive proximal childhood form of spinal muscular atrophy (SMA). Previously, we demonstrated that the genes responsible for these disorders were not orthologous. Here, we identify the pmn mutation as resulting in a Trp524Gly substitution at the last residue of the tubulin-specific chaperone e (Tbce) protein that leads to decreased protein stability. Electron microscopy of the sciatic and phrenic nerves of affected mice showed a reduced number of microtubules, probably due to defective stabilization. Transgenic complementation with a wildtype Tbce cDNA restored a normal phenotype in mutant mice. Our observations indicate that Tbce is critical for the maintenance of microtubules in mouse motor axons, and suggest that altered function of tubulin cofactors might be implicated in human motor neuron diseases.


Asunto(s)
Enfermedades de los Nervios Craneales/genética , Chaperonas Moleculares/genética , Mutación Missense , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Northern Blotting , Células COS , Mapeo Cromosómico , Cruzamientos Genéticos , Análisis Mutacional de ADN , Vectores Genéticos , Células HeLa , Humanos , Hibridación in Situ , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Chaperonas Moleculares/fisiología , Datos de Secuencia Molecular , Mutación , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección
6.
PLoS Genet ; 5(12): e1000784, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041218

RESUMEN

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G<-->A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.


Asunto(s)
Mutación Missense/genética , Células de Purkinje/enzimología , Células de Purkinje/patología , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Dendritas/enzimología , Dendritas/ultraestructura , Regulación de la Expresión Génica , Sitios Genéticos/genética , Genotipo , Longevidad , Ratones , Ratones Mutantes Neurológicos , Datos de Secuencia Molecular , Fenotipo , Células de Purkinje/ultraestructura , Ubiquitina-Proteína Ligasas/química
7.
Mol Genet Genomics ; 286(1): 1-20, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21547562

RESUMEN

With the advances in molecular genetics, animal models of human diseases are becoming more numerous and more refined every year. Despite this, one must recognize that they generally do not faithfully and comprehensively mimic the homologous human disease. Faced with these imperfections, some geneticists believe that these models are of little value, while for others, on the contrary, they are important tools. We agree with this second statement, and in this review, we examine the reasons that may explain the observed differences and suggest means to circumvent or even exploit them. Our opinion is that animal models should be regarded more as tools capable of answering specific questions rather than mere replicas, at a smaller scale, of a given human disease. Far from disappointing they are probably called for a promising future.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Animales , Humanos
8.
Am J Pathol ; 177(4): 1958-68, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20724589

RESUMEN

Citrullinemia type I (CTLN1, OMIM# 215700) is an inherited urea cycle disorder that is caused by an argininosuccinate synthetase (ASS) enzyme deficiency. In this report, we describe two spontaneous hypomorphic alleles of the mouse Ass1 gene that serve as an animal model of CTLN1. These two independent mouse mutant alleles, also described in patients affected with CTLN1, interact to produce a range of phenotypes. While some mutant mice died within the first week after birth, others survived but showed severe retardation during postnatal development as well as alopecia, lethargy, and ataxia. Notable pathological findings were similar to findings in human CTLN1 patients and included citrullinemia and hyperammonemia along with delayed cerebellar development, epidermal hyperkeratosis, and follicular dystrophy. Standard treatments for CTLN1 were effective in rescuing the phenotype of these mutant mice. Based on our studies, we propose that defective cerebellar granule cell migration secondary to disorganization of Bergmann glial cell fibers cause cerebellar developmental delay in the hyperammonemic and citrullinemic brain, pointing to a possible role for nitric oxide in these processes. These mouse mutations constitute a suitable model for both mechanistic and preclinical studies of CTLN1 and other hyperammonemic encephalopathies and, at the same time, underscore the importance of complementing knockout mutations with hypomorphic mutations for the generation of animal models of human genetic diseases.


Asunto(s)
Argininosuccinato Sintasa/fisiología , Citrulinemia/etiología , Modelos Animales de Enfermedad , Hiperamonemia/etiología , Mutación Missense/genética , Alelos , Animales , Arginina/farmacología , Western Blotting , Movimiento Celular , Cerebelo/anomalías , Citrulinemia/tratamiento farmacológico , Discapacidades del Desarrollo/tratamiento farmacológico , Discapacidades del Desarrollo/etiología , Femenino , Trastornos del Crecimiento/tratamiento farmacológico , Trastornos del Crecimiento/etiología , Humanos , Hiperamonemia/tratamiento farmacológico , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Óxido Nítrico/metabolismo , Fenotipo , Benzoato de Sodio/farmacología , Síndrome
9.
Med Sci (Paris) ; 27(4): 387-90, 2011 Apr.
Artículo en Francés | MEDLINE | ID: mdl-21524403

RESUMEN

Rat and mice are privileged tools for scientists. However, despite obvious advantages, such as a larger size, more faithful reproduction of human diseases, and utility for physiological and cognitive studies, rats have suffered from limited genetic technologies such as targeted mutagenesis. However, the gap between rat and mouse for genetic approaches will soon disappear with the recent advances of zinc finger nucleases applicable to early-stage rat embryos and the successful derivation of germ line competent rat ES cells, almost thirty years after murine ES cells. This will lead to new opportunities and to increase our capacity to model human pathologies.


Asunto(s)
Técnicas Genéticas , Ratas/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Modelos Animales de Enfermedad , Endonucleasas/metabolismo , Predicción , Técnicas de Inactivación de Genes , Genómica , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ratas/embriología , Ratas Wistar , Especificidad de la Especie , Dedos de Zinc
11.
J Neurosci ; 28(11): 2827-36, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18337413

RESUMEN

The mitochondrial metalloprotease AFG3L2 assembles with the homologous protein paraplegin to form a supracomplex in charge of the essential protein quality control within mitochondria. Mutations of paraplegin cause a specific axonal degeneration of the upper motoneuron and, therefore, hereditary spastic paraplegia. Here we present two Afg3l2 murine models: a newly developed null and a spontaneous mutant that we found carrier of a missense mutation. Contrasting with the mild and late onset axonal degeneration of paraplegin-deficient mouse, Afg3l2 models display a marked impairment of axonal development with delayed myelination and poor axonal radial growth leading to lethality at P16. The increased severity of the Afg3l2 mutants is explained by two main molecular features that differentiate AFG3L2 from paraplegin: its higher neuronal expression and its versatile ability to support both hetero-oligomerization and homo-oligomerization. Our data assign to AFG3L2 a crucial role by linking mitochondrial metabolism and axonal development. Moreover, we propose AFG3L2 as an excellent candidate for motoneuron and cerebellar diseases with early onset unknown etiology.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Axones/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Axones/patología , Axones/fisiología , Ratones , Ratones Mutantes , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular
12.
J Neurosci ; 27(33): 8779-89, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699660

RESUMEN

Axonal degeneration represents one of the earliest pathological features in motor neuron diseases. We here studied the underlying molecular mechanisms in progressive motor neuronopathy (pmn) mice mutated in the tubulin-specific chaperone TBCE. We demonstrate that TBCE is a peripheral membrane-associated protein that accumulates at the Golgi apparatus. In pmn mice, TBCE is destabilized and disappears from the Golgi apparatus of motor neurons, and microtubules are lost in distal axons. The axonal microtubule loss proceeds retrogradely in parallel with the axonal dying back process. These degenerative changes are inhibited in a dose-dependent manner by transgenic TBCE complementation that restores TBCE expression at the Golgi apparatus. In cultured motor neurons, the pmn mutation, interference RNA-mediated TBCE depletion, and brefeldin A-mediated Golgi disruption all compromise axonal tubulin routing. We conclude that motor axons critically depend on axonal tubulin routing from the Golgi apparatus, a process that involves TBCE and possibly other tubulin chaperones.


Asunto(s)
Aparato de Golgi/metabolismo , Chaperonas Moleculares/fisiología , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/ultraestructura , Degeneración Nerviosa/patología , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Progresión de la Enfermedad , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Aparato de Golgi/efectos de los fármacos , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Microtúbulos/metabolismo , Microtúbulos/patología , Microtúbulos/ultraestructura , Chaperonas Moleculares/genética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Médula Espinal/metabolismo , Médula Espinal/patología
13.
Neurogenetics ; 9(4): 237-48, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18604572

RESUMEN

Small-conductance Ca(2+)-activated potassium (SK) channels are heteromeric complexes of SK alpha-subunits and calmodulin that modulate membrane excitability, are responsible for part of the after-hyperpolarization (AHP) following action potentials, and thus control the firing patterns and excitability of most central neurons. An engineered knockout allele for the SK2 subunit has previously been reported. The hippocampal neurons of these mice lacked the medium latency component of the AHP, but the animals were not described as presenting any overt behavioral phenotype. In this report, we describe a deletion in the 5' region of the Kcnn2 gene encoding the SK2 subunit in the mouse neurological frissonnant (fri) mutant. The frissonnant mutant phenotype is characterized by constant rapid tremor and locomotor instability. It has been suggested, based merely on its phenotype, as a potential model for human Parkinson disease. We used a positional cloning strategy to identify the mutation underlying the frissonnant phenotype. We narrowed the genetic disease interval and identified a 3,441-bp deletion in the Kcnn2 gene, one of the three candidate genes present in the interval. Expression studies showed complete absence of normal Kcnn2 transcripts while some tissue-specific abnormal truncated variants were detected. Intracellular electrophysiological recordings of central vestibular neurons revealed permanent alterations of the AHP and firing behavior that might cause the tremor and associated locomotor deficits. Thus, the fri mutation suggests a new, potentially important physiological role, which had not been described, for the SK2 subunit of small-conductance Ca(2+)-activated potassium channels.


Asunto(s)
Conducta Animal/fisiología , Eliminación de Secuencia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Encéfalo/metabolismo , Mapeo Cromosómico , Cartilla de ADN/genética , Fenómenos Electrofisiológicos , Femenino , Expresión Génica , Haplotipos , Hibridación in Situ , Hígado/metabolismo , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Mutantes , Datos de Secuencia Molecular , Fenotipo , Homología de Secuencia de Aminoácido , Temblor/genética , Temblor/fisiopatología
14.
Genetics ; 177(4): 2321-33, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17947429

RESUMEN

Complex traits are under the genetic control of multiple genes, often with weak effects and strong epistatic interactions. We developed two new collections of mouse strains to improve genetic dissection of complex traits. They are derived from several backcrosses of the Mus spretus SEG/Pas or STF/Pas strains on the C57BL/6J background. Each of the 55 interspecific recombinant congenic strains (IRCSs) carries up to eight SEG/Pas chromosomal segments with an average size of 11.7 Mb, totalizing 1.37% of the genome. The complete series covers 39.7% of the SEG/Pas genome. As a complementary resource, six partial or complete interspecific consomic strains were developed and increased genome coverage to 45.6%. To evaluate the usefulness of these strains for QTL mapping, 16 IRCSs were compared with C57BL/6J for seven hematological parameters. Strain 66H, which carries three SEG/Pas chromosomal segments, had lower red blood cell volume and higher platelet count than C57BL/6J. Each chromosomal segment was isolated in a congenic strain to evaluate individual effects. Congenic strains were combined to assess epistasis. Our data show that both traits were controlled by several genes with complex epistatic interactions. IRCSs are therefore useful to unravel QTL with small effects and gene-by-gene interactions.


Asunto(s)
Epistasis Genética , Sitios de Carácter Cuantitativo , Recombinación Genética , Animales , Mapeo Cromosómico , Volumen de Eritrocitos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Endogámicos , Recuento de Plaquetas
15.
Cytokine ; 42(1): 62-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18334301

RESUMEN

Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Virus de la Influenza A/metabolismo , Ratones Congénicos , Infecciones por Orthomyxoviridae/metabolismo , Animales , Secuencia de Bases , Peso Corporal , Femenino , Proteínas de Unión al GTP/genética , Ligamiento Genético , Humanos , Inmunidad Innata , Pulmón/citología , Pulmón/virología , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas de Resistencia a Mixovirus , Alineación de Secuencia , Tasa de Supervivencia
16.
JCI Insight ; 3(16)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30135305

RESUMEN

Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients.


Asunto(s)
Flagelos/patología , Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Adulto , Animales , Aniones/metabolismo , Transporte Biológico Activo/genética , Biomarcadores/análisis , Estudios de Casos y Controles , Supervivencia Celular/genética , China , Modelos Animales de Enfermedad , Femenino , Voluntarios Sanos , Humanos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/patología , Transporte Iónico/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Motilidad Espermática/genética , Espermatozoides/citología , Espermatozoides/patología , Testículo/patología
17.
Trends Genet ; 19(1): 24-31, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12493245

RESUMEN

Classical laboratory inbred strains of mice have been extremely helpful for research in immunology and oncology, and more generally, for the analysis of complex traits. Unfortunately, because they all derive from a relatively small pool of ancestors, their genetic polymorphism is rather limited. However, recently strains belonging to different species of Mus have been established from wild progenitors. These are an interesting addition to the arsenal of mouse geneticists, because they can be crossed with classical laboratory strains to produce viable and fertile offspring with a large number of polymorphisms of natural origin. These strains are helpful for making genome annotations because they permit highly refined genotype-phenotype correlations. They also allow the interpretation of molecular variation within a clear evolutionary framework. In this article, we provide examples with the aim of promoting the use of these new strains.


Asunto(s)
Variación Genética , Ratones/genética , Animales , Conducta Animal , Evolución Biológica , Cromosomas , Epistasis Genética , Ratones Endogámicos , Filogenia , Polimorfismo Genético
18.
Int J Mol Med ; 18(4): 593-600, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964410

RESUMEN

We describe a novel spontaneous autosomal recessive mutation, cervelet-4 (crv4), which arose in a BALB/c strain. Mice homozygous for the mutation exhibit principally a reduced body size, a congenital neurological phenotype characterized by ataxic gait and intention tremor, with no gross anomalies observed in brain or cerebellum, and skeletal anomalies. Using linkage analysis, we mapped the crv4 locus to the proximal region of chromosome 10, at the location of the Grm1 gene. Genetic complementation crosses between crv4 and Grm1 KO mice confirmed that crv4 is a new allele of Grm1. Molecular analysis of the Grm1 gene in mutant mice revealed the insertion of a 190-bp LTR fragment in intron 4. Our results also indicated that the presence of the LTR fragment caused the disruption of the Grm1 normal splicing process and complete absence of the wild-type protein. crv4 is an interesting model to extend the study of Grm1 function and the pathological effects of Grm1 deficiency in vivo.


Asunto(s)
Ataxia/genética , Cifosis/genética , Mutación/genética , Empalme del ARN , Receptores de Glutamato Metabotrópico/genética , Escoliosis/genética , Animales , Ataxia/etiología , Secuencia de Bases , Western Blotting , Mapeo Cromosómico/métodos , Modelos Animales de Enfermedad , Femenino , Genotipo , Humanos , Intrones/genética , Cifosis/complicaciones , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Datos de Secuencia Molecular , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retroelementos/genética , Escoliosis/complicaciones , Homología de Secuencia de Ácido Nucleico
19.
Oncotarget ; 7(35): 56083-56106, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528230

RESUMEN

A mutation in the HERC2 gene has been linked to a severe neurodevelopmental disorder with similarities to the Angelman syndrome. This gene codifies a protein with ubiquitin ligase activity that regulates the activity of tumor protein p53 and is involved in important cellular processes such as DNA repair, cell cycle, cancer, and iron metabolism. Despite the critical role of HERC2 in these physiological and pathological processes, little is known about its relevance in vivo. Here, we described a mouse with targeted inactivation of the Herc2 gene. Homozygous mice were not viable. Distinct from other ubiquitin ligases that interact with p53, such as MDM2 or MDM4, p53 depletion did not rescue the lethality of homozygous mice. The HERC2 protein levels were reduced by approximately one-half in heterozygous mice. Consequently, HERC2 activities, including ubiquitin ligase and stimulation of p53 activity, were lower in heterozygous mice. A decrease in HERC2 activities was also observed in human skin fibroblasts from individuals with an Angelman-like syndrome that express an unstable mutant protein of HERC2. Behavioural analysis of heterozygous mice identified an impaired motor synchronization with normal neuromuscular function. This effect was not observed in p53 knockout mice, indicating that a mechanism independent of p53 activity is involved. Morphological analysis showed the presence of HERC2 in Purkinje cells and a specific loss of these neurons in the cerebella of heterozygous mice. In these animals, an increase of autophagosomes and lysosomes was observed. Our findings establish a crucial role of HERC2 in embryonic development and motor coordination.


Asunto(s)
Síndrome de Angelman/patología , Desarrollo Embrionario/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Cerebelo/patología , Cerebelo/ultraestructura , Femenino , Fibroblastos , Factores de Intercambio de Guanina Nucleótido/genética , Heterocigoto , Homocigoto , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Embarazo , Células de Purkinje/patología , Células de Purkinje/ultraestructura , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
20.
Oncogene ; 21(43): 6680-3, 2002 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12242666

RESUMEN

Mice of the C57BL/6J inbred strain develop thymic lymphomas at very high frequency after acute gamma-irradiation, while mice of several inbred strains derived from the wild progenitor of the Mus spretus species and their F1 hybrids with C57BL/6J appear extremely resistant. Analysis of the genetic determinism of the gamma-radiation-induced thymic lymphoma (RITL) resistance with the help of inter-specific consomic strains (ICS), which carry a single introgressed Mus spretus chromosome on a C57BL/6J genetic background, provide significant evidence for the existence of a thymic lymphoma resistance (Tlyr1) locus on chromosome 19. The subsequent analysis of the backcross progeny resulting from a cross between consomic mice heterozygous for the Mus spretus chromosome 19 and C57BL/6J mice, together with the study of inter-specific recombinant congenic strains (IRCS), suggest that this Tlyr1 locus maps within the D19Mit60-D19Mit40 chromosome interval. In addition to the discovery of a new locus controlling RITL development, our study emphasizes the value of ICS and IRCS for the genetic analysis of cancer predisposition.


Asunto(s)
Linfoma/genética , Neoplasias Inducidas por Radiación/genética , Neoplasias del Timo/genética , Animales , Mapeo Cromosómico , Rayos gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Tolerancia a Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA