Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2309597, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38279613

RESUMEN

Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1ß, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.


Asunto(s)
Antiinflamatorios , Hidrogeles , Manosa , Nanocompuestos , Osteoartritis , Ozono , Nanocompuestos/química , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Animales , Ozono/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Hidrogeles/química , Manosa/química , Cartílago/efectos de los fármacos , Cartílago/patología , Ratones , Masculino , Inyecciones , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo
2.
Small ; 19(21): e2207319, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36869654

RESUMEN

Overexpressed matrix metalloproteinases, hypoxia microenvironment, and metabolic abnormality are important pathological signs of rheumatoid arthritis (RA). Designing a delivery carrier according to the pathological characteristics of RA that can control drug release in response to disease severity may be a promising treatment strategy. Psoralen is the main active ingredient isolated from Psoralea corylifolia L. and possesses excellent anti-inflammatory activities as well as improving bone homeostasis. However, the specific underlying mechanisms, particularly the possible relationships between the anti-RA effects of psoralen and related metabolic network, remain largely unexplored. Furthermore, psoralen shows systemic side effects and has unsatisfactory solubility. Therefore, it is desirable to develop a novel delivery system to maximize psoralen's therapeutic effect. In this study, a self-assembled degradable hydrogel platform is developed that delivers psoralen and calcium peroxide to arthritic joints and controls the release of psoralen and oxygen according to inflammatory stimulation, to regulate homeostasis and the metabolic disorder of the anoxic arthritic microenvironment. Therefore, the hydrogel drug delivery system based on the responsiveness of the inflammatory microenvironment and regulation of metabolism provides a new therapeutic strategy for RA treatment.


Asunto(s)
Artritis Reumatoide , Ficusina , Humanos , Ficusina/farmacología , Hidrogeles , Extractos Vegetales , Huesos
3.
Funct Integr Genomics ; 19(4): 645-658, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30859354

RESUMEN

Although many of the genetic loci associated with breast cancer risk have been reported, there is a lack of systematic analysis of regulatory networks composed of different miRNAs and mRNAs on survival analysis in breast cancer. To reconstruct the microRNAs-genes regulatory network in breast cancer, we employed the expression data from The Cancer Genome Atlas (TCGA) related to five essential miRNAs including miR-21, miR-22, miR-210, miR-221, and miR-222, and their associated functional genomics data from the GEO database. Then, we performed an integration analysis to identify the essential target factors and interactions for the next survival analysis in breast cancer. Based on the results of our integrated analysis, we have identified significant common regulatory signatures including differentially expressed genes, enriched pathways, and transcriptional regulation such as interferon regulatory factors (IRFs) and signal transducer and activator of transcription 1 (STAT1). Finally, a reconstructed regulatory network of five miRNAs and 34 target factors was established and then applied to survival analysis in breast cancer. When we used expression data for individual miRNAs, only miR-21 and miR-22 were significantly associated with a survival change. However, we identified 45 significant miRNA-gene pairs that predict overall survival in breast cancer out of 170 one-on-one interactions in our reconstructed network covering all of five miRNAs, and several essential factors such as PSMB9, HLA-C, RARRES3, UBE2L6, and NMI. In our study, we reconstructed regulatory network of five essential microRNAs for survival analysis in breast cancer by integrating miRNA and mRNA expression datasets. These results may provide new insights into regulatory network-based precision medicine for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Neoplasias de la Mama/patología , Carcinoma/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Invasividad Neoplásica , ARN Mensajero/metabolismo , Análisis de Supervivencia
4.
Mol Ther ; 26(11): 2669-2680, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30415659

RESUMEN

Reversing established muscle atrophy following mechanical unloading is of great clinical challenge. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in myogenesis. Here we identified a lncRNA (mechanical unloading-induced muscle atrophy-related lncRNA [lncMUMA]) enriched in muscle, which was the most downregulated lncRNA during muscle atrophy development in hindlimb suspension (HLS) mice. The in vitro and in vivo data demonstrated that the decreased expression levels of lncMUMA closely associated with a reduction of myogenesis during mechanical unloading. Mechanistically, lncMUMA promoted myogenic differentiation by functioning as a miR-762 sponge to regulate the core myogenic regulator MyoD in vitro. The enforced expression of lncMUMA relieved the decreases in MyoD protein and muscle mass in miR-762 knockin mice. Therapeutically, the enforced expression of lncMUMA improved the in vitro myogenic differentiation of myoblasts under microgravity simulation, prevented the muscle atrophy development, and reversed the established muscle atrophy in HLS mice. These findings identify lncMUMA as an anabolic regulator to reverse established muscle atrophy following mechanical unloading.


Asunto(s)
MicroARNs/genética , Atrofia Muscular/genética , Proteína MioD/genética , ARN Largo no Codificante/genética , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Suspensión Trasera/métodos , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Atrofia Muscular/terapia , Mioblastos/metabolismo , Mioblastos/patología
5.
Nucleic Acids Res ; 45(D1): D1021-D1028, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27924044

RESUMEN

In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein-protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/.


Asunto(s)
Bases de Datos Genéticas , Plantas/genética , Plantas/metabolismo , Motor de Búsqueda , Transporte Biológico , Espacio Intracelular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
6.
J Biol Chem ; 291(24): 12501-12513, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27056332

RESUMEN

Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.


Asunto(s)
Caenorhabditis elegans/genética , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Especificidad de Órganos/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Diferenciación Celular/genética , División Celular/genética , Linaje de la Célula/genética , Movimiento Celular/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Desarrollo Embrionario/genética , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Interferencia de ARN , Factores de Tiempo
8.
Int J Mol Sci ; 18(10)2017 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-28991194

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1), the best-studied isoform of the nuclear enzyme PARP family, plays a pivotal role in cellular biological processes, such as DNA repair, gene transcription, and so on. PARP1 has been found to be overexpressed in various carcinomas. These all indicate the clinical potential of PARP1 as a therapeutic target of human malignancies. Additionally, multiple preclinical research studies and clinical trials demonstrate that inhibition of PARP1 can repress tumor growth and metastasis. Up until now, PARP1 inhibitors are clinically used not only for monotherapy to suppress various tumors, but also for adjuvant therapy, to maintain or enhance therapeutic effects of mature antineoplastic drugs, as well as protect patients from chemotherapy and surgery-induced injury. To supply a framework for understanding recent research progress of PARP1 in carcinomas, we review the structure, expression, functions, and mechanisms of PARP1, and summarize the clinically mature PARP1-related anticancer agents, to provide some ideas for the development of other promising PARP1 inhibitors in antineoplastic therapy.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/patología
9.
Mol Syst Biol ; 11(6): 814, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063786

RESUMEN

Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Diferenciación Celular/genética , División Celular/genética , Desarrollo Embrionario , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Linaje de la Célula/genética , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica
10.
Nucleic Acids Res ; 42(Web Server issue): W130-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24875471

RESUMEN

Interactions among transcriptional factors (TFs), cofactors and other proteins or enzymes can affect transcriptional regulatory capabilities of eukaryotic organisms. Post-translational modifications (PTMs) cooperate with TFs and epigenetic alterations to constitute a hierarchical complexity in transcriptional gene regulation. While clearly implicated in biological processes, our understanding of these complex regulatory mechanisms is still limited and incomplete. Various online software have been proposed for uncovering transcriptional and epigenetic regulatory networks, however, there is a lack of effective web-based software capable of constructing underlying interactive organizations between post-translational and transcriptional regulatory components. Here, we present an open web server, post-translational hierarchical gene regulatory network (PTHGRN) to unravel relationships among PTMs, TFs, epigenetic modifications and gene expression. PTHGRN utilizes a graphical Gaussian model with partial least squares regression-based methodology, and is able to integrate protein-protein interactions, ChIP-seq and gene expression data and to capture essential regulation features behind high-throughput data. The server provides an integrative platform for users to analyze ready-to-use public high-throughput Omics resources or upload their own data for systems biology study. Users can choose various parameters in the method, build network topologies of interests and dissect their associations with biological functions. Application of the software to stem cell and breast cancer demonstrates that it is an effective tool for understanding regulatory mechanisms in biological complex systems. PTHGRN web server is publically available at web site http://www.byanbioinfo.org/pthgrn.


Asunto(s)
Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Mapeo de Interacción de Proteínas , Programas Informáticos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Células MCF-7 , Ratones , Procesamiento Proteico-Postraduccional , Ratas , Factores de Transcripción/metabolismo
11.
Int J Mol Sci ; 17(12)2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27983617

RESUMEN

Breast cancer is the second leading cause of cancer death among women. Human epidermal receptor 2 (HER2) positive breast cancer (HER2+ BC) is the most aggressive subtype of breast cancer, with poor prognosis and a high rate of recurrence. About one third of breast cancer is HER2+ BC with significantly high expression level of HER2 protein compared to other subtypes. Therefore, HER2 is an important biomarker and an ideal target for developing therapeutic strategies for the treatment HER2+ BC. In this review, HER2 structure and physiological and pathological roles in HER2+ BC are discussed. Two diagnostic tests, immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH), for evaluating HER2 expression levels are briefly introduced. The current mainstay targeted therapies for HER2+ BC include monoclonal antibodies, small molecule tyrosine kinase inhibitors, antibody-drug conjugates (ADC) and other emerging anti-HER2 agents. In clinical practice, combination therapies are commonly adopted in order to achieve synergistic drug response. This review will help to better understand the molecular mechanism of HER2+ BC and further facilitate the development of more effective therapeutic strategies against HER2+ BC.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Receptor ErbB-2/metabolismo , Investigación Biomédica Traslacional , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Modelos Biológicos , Terapia Molecular Dirigida
12.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918446

RESUMEN

Osteoporosis is a progressive skeletal disorder characterized by low bone mass and increased risk of fracture in later life. The incidence and costs associated with treating osteoporosis cause heavy socio-economic burden. Currently, the diagnosis of osteoporosis mainly depends on bone mineral density and bone turnover markers. However, these indexes are not sensitive and accurate enough to reflect the osteoporosis progression. Metabolomics offers the potential for a holistic approach for clinical diagnoses and treatment, as well as understanding of the pathological mechanism of osteoporosis. In this review, we firstly describe the study subjects of osteoporosis and bio-sample preparation procedures for different analytic purposes, followed by illustrating the biomarkers with potentially predictive, diagnosis and pharmaceutical values when applied in osteoporosis research. Then, we summarize the published metabolic pathways related to osteoporosis. Furthermore, we discuss the importance of chronological data and combination of multi-omics in fully understanding osteoporosis. The application of metabolomics in osteoporosis could provide researchers the opportunity to gain new insight into the metabolic profiling and pathophysiological mechanisms. However, there is still much to be done to validate the potential biomarkers responsible for the progression of osteoporosis and there are still many details needed to be further elucidated.


Asunto(s)
Biomarcadores/metabolismo , Investigación Biomédica , Metabolómica/métodos , Osteoporosis/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Osteoporosis/tratamiento farmacológico
13.
Bioinformatics ; 30(8): 1190-1192, 2014 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-24389658

RESUMEN

ChIP-seq technology provides an accurate characterization of transcription or epigenetic factors binding on genomic sequences. With integration of such ChIP-based and other high-throughput information, it would be dedicated to dissecting cross-interactions among multilevel regulators, genes and biological functions. Here, we devised an integrative web server CMGRN (constructing multilevel gene regulatory networks), to unravel hierarchical interactive networks at different regulatory levels. The newly developed method used the Bayesian network modeling to infer causal interrelationships among transcription factors or epigenetic modifications by using ChIP-seq data. Moreover, it used Bayesian hierarchical model with Gibbs sampling to incorporate binding signals of these regulators and gene expression profile together for reconstructing gene regulatory networks. The example applications indicate that CMGRN provides an effective web-based framework that is able to integrate heterogeneous high-throughput data and to reveal hierarchical 'regulome' and the associated gene expression programs. AVAILABILITY: http://bioinfo.icts.hkbu.edu.hk/cmgrn; http://www.byanbioinfo.org/cmgrn CONTACT: yanbinai6017@gmail.com or junwen@hku.hk Supplementary Information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Redes de Comunicación de Computadores , Redes Reguladoras de Genes , Genómica/métodos , Teorema de Bayes , Inmunoprecipitación de Cromatina , Epigénesis Genética , Expresión Génica , Internet , Análisis de Secuencia por Matrices de Oligonucleótidos , Programas Informáticos , Factores de Transcripción/metabolismo
14.
BMC Complement Med Ther ; 24(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166916

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine (TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response components group (KRCG) in the treatment of RA have not been well studied. METHODS: The components and potential targets of HGWD were extracted from published databases. A novel node influence calculation model that considers both the node control force and node bridging force was designed to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were confirmed using CCK-8, qPCR, and western blotting. RESULTS: A total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the pathogenic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting the cAMP, PI3K-Akt, and HIF-1α pathways. CONCLUSIONS: We have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflammatory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausible and reliable, offering a valuable reference for the secondary development of herbal formulas.


Asunto(s)
Artritis Reumatoide , Fármacos Neuroprotectores , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Reproducibilidad de los Resultados , Artritis Reumatoide/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico
15.
Chin Med ; 19(1): 36, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429802

RESUMEN

BACKGROUND: Liver cirrhosis is a chronic liver disease with hepatocyte necrosis and lesion. As one of the TCM formulas Wuling Powder (WLP) is widely used in the treatment of liver cirrhosis. However, it's key functional components and action mechanism still remain unclear. We attempted to explore the Key Group of Effective Components (KGEC) of WLP in the treatment of Liver cirrhosis through integrative pharmacology combined with experiments. METHODS: The components and potential target genes of WLP were extracted from published databases. A novel node importance calculation model considering both node control force and node bridging force is designed to construct the Function Response Space (FRS) and obtain key effector proteins. The genetic knapsack algorithm was employed to select KGEC. The effectiveness and reliability of KGEC were evaluated at the functional level by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the effectiveness and potential mechanism of KGEC were confirmed by CCK-8, qPCR and Western blot. RESULTS: 940 effective proteins were obtained in FRS. KEGG pathways and GO terms enrichments analysis suggested that effective proteins well reflect liver cirrhosis characteristics at the functional level. 29 components of WLP were defined as KGEC, which covered 100% of the targets of the effective proteins. Additionally, the pathways enriched for the KGEC targets accounted for 83.33% of the shared genes between the targets and the pathogenic genes enrichment pathways. Three components scopoletin, caryophyllene oxide, and hydroxyzinamic acid from KGEC were selected for in vivo verification. The qPCR results demonstrated that all three components significantly reduced the mRNA levels of COL1A1 in TGF-ß1-induced liver cirrhosis model. Furthermore, the Western blot assay indicated that these components acted synergistically to target the NF-κB, AMPK/p38, cAMP, and PI3K/AKT pathways, thus inhibiting the progression of liver cirrhosis. CONCLUSION: In summary, we have developed a new model that reveals the key components and potential mechanisms of WLP for the treatment of liver cirrhosis. This model provides a reference for the secondary development of WLP and offers a methodological strategy for studying TCM formulas.

16.
Adv Sci (Weinh) ; 11(30): e2402477, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874373

RESUMEN

Chondrocyte senescence and reduced lubrication play pivotal roles in the pathogenesis of age-related osteoarthritis (OA). In the present study, highly lubricated and drug-loaded hydrogel microspheres are designed and fabricated through the radical polymerization of sulfobetaine (SB)-modified hyaluronic acid methacrylate using microfluidic technology. The copolymer contains a large number of SB and carboxyl groups that can provide a high degree of lubrication through hydration and form electrostatic loading interactions with metformin (Met@SBHA), producing a high drug load for anti-chondrocyte senescence. Mechanical, tribological, and drug release analyses demonstrated enhanced lubricative properties and prolonged drug dissemination of the Met@SBHA microspheres. RNA sequencing (RNA-seq) analysis, network pharmacology, and in vitro assays revealed the extraordinary capacity of Met@SBHA to combat chondrocyte senescence. Additionally, inducible nitric oxide synthase (iNOS) has been identified as a promising protein modulated by Met in senescent chondrocytes, thereby exerting a significant influence on the iNOS/ONOO-/P53 pathway. Notably, the intra-articular administration of Met@SBHA in aged mice ameliorated cartilage senescence and OA pathogenesis. Based on the findings of this study, Met@SBHA emerges as an innovative and promising strategy in tackling age-related OA serving the dual function of enhancing joint lubrication and mitigating cartilage senescence.


Asunto(s)
Modelos Animales de Enfermedad , Hidrogeles , Metformina , Microesferas , Osteoartritis , Metformina/farmacología , Animales , Ratones , Osteoartritis/tratamiento farmacológico , Hidrogeles/química , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Senescencia Celular/efectos de los fármacos
17.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921741

RESUMEN

Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.

18.
BMC Complement Med Ther ; 23(1): 178, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264383

RESUMEN

BACKGROUND: Taohong Siwu Decoction (THSWD) is a widely used traditional Chinese medicine (TCM) prescription in the treatment of ischemic stroke. There are thousands of chemical components in THSWD. However, the key functional components are still poorly understood. This study aimed to construct a mathematical model for screening of active ingredients in TCM prescriptions and apply it to THSWD on ischemic stroke. METHODS: Botanical drugs and compounds in THSWD were acquired from multiple public TCM databases. All compounds were initially screened by ADMET properties. SEA, HitPick, and Swiss Target Prediction were used for target prediction of the filtered compounds. Ischemic stroke pathological genes were acquired from the DisGeNet database. The compound-target-pathogenic gene (C-T-P) network of THSWD was constructed and then optimized using the multiobjective optimization (MOO) algorithm. We calculated the cumulative target coverage score of each compound and screened the top compounds with 90% coverage. Finally, verification of the neuroprotective effect of these compounds was performed with the oxygen-glucose deprivation and reoxygenation (OGD/R) model. RESULTS: The optimized C-T-P network contains 167 compounds, 1,467 predicted targets, and 1,758 stroke pathological genes. And the MOO model showed better optimization performance than the degree model, closeness model, and betweenness model. Then, we calculated the cumulative target coverage score of the above compounds, and the cumulative effect of 39 compounds on pathogenic genes reached 90% of all compounds. Furthermore, the experimental results showed that decanoic acid, butylphthalide, chrysophanol, and sinapic acid significantly increased cell viability. Finally, the docking results showed the binding modes of these four compounds and their target proteins. CONCLUSION: This study provides a methodological reference for the screening of potential therapeutic compounds of TCM. In addition, decanoic acid and sinapic acid screened from THSWD were found having potential neuroprotective effects first and verified with cell experiments, however, further in vitro and in vivo studies are needed to explore the precise mechanisms involved.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicina Tradicional China/métodos , Fármacos Neuroprotectores/farmacología
19.
BMC Complement Med Ther ; 23(1): 44, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765346

RESUMEN

BACKGROUND: Chinese medicine usually acts as "multi-ingredients, multi-targets and multi-pathways" on complex diseases, and these action modes reflect the coordination and integrity of the treatment process with traditional Chinese medicine (TCM). System pharmacology is developed based on the cross-disciplines of directional pharmacology, system biology, and mathematics, has the characteristics of integrity and synergy in the treatment process of TCM. Therefore, it is suitable for analyzing the key ingredients and mechanisms of TCM in treating complex diseases. Intracerebral Hemorrhage (ICH) is one of the leading causes of death in China, with the characteristics of high mortality and disability rate. Bring a significant burden on people and society. An increasing number of studies have shown that Chinese medicine prescriptions have good advantages in the treatment of ICH, and Ditan Decoction (DTT) is one of the commonly used prescriptions in the treatment of ICH. Modern pharmacological studies have shown that DTT may play a therapeutic role in treating ICH by inhibiting brain inflammation, abnormal oxidative stress reaction and reducing neurological damage, but the specific key ingredients and mechanism are still unclear. METHODS: To solve this problem, we established PPI network based on the latest pathogenic gene data of ICH, and CT network based on ingredient and target data of DTT. Subsequently, we established optimization space based on PPI network and CT network, and constructed a new model for node importance calculation, and proposed a calculation method for PES score, thus calculating the functional core ingredients group (FCIG). These core functional groups may represent DTT therapy for ICH. RESULTS: Based on the strategy, 44 ingredients were predicted as FCIG, results showed that 80.44% of the FCIG targets enriched pathways were coincided with the enriched pathways of pathogenic genes. Both the literature and molecular docking results confirm the therapeutic effect of FCIG on ICH via targeting MAPK signaling pathway and PI3K-Akt signaling pathway. CONCLUSIONS: The FCIG obtained by our network pharmacology method can represent the effect of DTT in treating ICH. These results confirmed that our strategy of active ingredient group optimization and the mechanism inference could provide methodological reference for optimization and secondary development of TCM.


Asunto(s)
Farmacología en Red , Fosfatidilinositol 3-Quinasas , Humanos , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Hemorragia Cerebral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA